PCR platform based on isothermal nucleic acid amplification method for creating test systems for diagnostics of infectious transmissible diseases (Review)
State Scientific Research Testing Institute of Military Medicine
Brief summary
The article presents a review of one of the promising areas in the field of nucleic acid detection of infectious transmissible diseases pathogens, such as bacteria and viruses. A part of them is classified as potential pathogenic biological agents capable of causing a guaranteed damaging effect and requires the development of detection and therapy. Recombinase polymerase amplification (RPA) is one of the fastest and most sensitive methods of isothermal nucleic acid amplification that does not require expensive laboratory equipment at the stages of amplification and detection of analysis results, as well as the participation of highly qualified personnel. It is possible to develop a PCR platform, based on this method, with immunochromatographic detection of amplification results on test strips for creating express test systems with fast, simple and accurate diagnosis of transmissible diseases pathogens. The operator only needs to develop a design of a specific primer pair and probe to the target and add them to the reaction mixture. After 25-30 minutes (for DNA genomes) it is possible to register amplification result on test strip and observe the appearance test line, that correlates with the presence of labeled PCR product. In the case of RNA genomes, the analysis time is increased in accordance with the duration of the reverse transcription stage. This format of analyte indication is convenient for use «point of care testing» (POCT) and in the field trial.
Key words
recombinase polymerase amplification; immunochromatographic detection; immunochromatographic test strips; transmissible diseases; pathogenic biological agents; "point of care testing"
2. Kydryavceva T.U., Popov V.P., Mokrievich A.N. i dr. Analiz epizootologicheskoi i epidemiologicheskoi sityacii po tylyaremii na territorii Rossiiskoi Federacii v 2023 g. i prognoz na 2024 g. Problemi osobo opasnih infekcii. 2024; 1: 17-29. https://doi.org/10.21055/0370-1069-2024-1-17-29.
3. Pytinceva E.V., Ydovichenko S.K., Nikitin D.N. i dr. Lihoradka Zapadnogo Nila: analiz epidemiologicheskoi sityacii v Rossiiskoi Federacii v 2023 g., prognoz na 2024 g. Problemi osobo opasnih infekcii. 2024; 1: 89-101. https://doi.org/10.21055/0370-1069-2024-1-89-101.
4. Shtrek S.V., Rydakov N.V., Shpinov S.N. i dr. Epidemiologicheskaya sityaciya po rikketsiozam i lihoradke Ky v Rossiiskoi Federacii za period 2010-2023 gg., prognoz na 2024 g. Problemi osobo opasnih infekcii. 2024; 3: 63-73. https://doi.org/10.21055/0370-1069-2024-3-63-73.
5. Nikitin A.Ya., Andaev E.I., Tolmacheva M.I. i dr. Epidemiologicheskaya sityaciya po kleshevomy virysnomy encefality v Rossiiskoi Federacii v 2014-2023 gg. i kratkosrochnii prognoz zabolevaemosti na 2024 g. Problemi osobo opasnih infekcii. 2024; 1: 48-58. https://doi.org/10.21055/0370-1069-2024-1-48-58.
7. Moskalev A.V., Gymilevskii B.U., Astapenko P.V. i dr. Vozbyditeli gemorragicheskih lihoradok i ih epidemiologiya. Vestnik Rossiiskoi voenno-medicinskoi akademii. 2020; 22 (1): 163-172. https://doi.org/10. 10.17816/brmma25987.
8. Kylichenko A.N., Maleckaya O.V., Manin E.A. i dr. Epidemiologicheskaya obstanovka po prirodno-ochagovim infekcionnim boleznyam na uge evropeiskoi chasti Rossii v 2023 g. S.: Stavropolskii protivochymnii instityt Rospotrebnadzora, 2024.
9. Popov N.V., Karnayhov I.G., Kyznecov A.A. i dr. Epidemiologicheskaya obstanovka po chyme v mire i prognoz ee razvitiya na 2025 g. v Rossiiskoi Federacii. Problemi osobo opasnih infekcii. 2025; 1: 74-83. https://doi.org/10.21055/0370-1069-2025-1-74-83.
10. Smelyanskii V.P., Jykov K.V., Kargashin S.A. i dr. Epidemiologicheskaya sityaciya po prirodno-ochagovim infekciyam v Volgogradskoi oblasti v 2023 g. Epidemiologiya. 2024; 15 (1): 66-73. https://doi.org/10.21886/2219-8075-2024-15-1-66-73.
13. Srivastava P., Prasad D. Isothermal nucleic acid amplification and its uses in modern diagnostic technologies. 3 Biotech. 2023; 13 (6): 200. https://doi.org/10.1007/s13205-023-03628-6.
14. Feng X., Liu Y., Zhao Y. et al. Recombinase polymerase amplification-based biosensor for rapid zoonoses screening. International Journal of Nanomedicine. 2023; 18: 6311-6331. https://doi.org/10.2147/IJN.S434197.
16. Balea R., Pollak N.M., Hobson-Peters J. et al. Development and pre-clinical evaluation of a Zika virus diagnostic for low resource settings. Frontiers in Microbiology. 2023; 14: 1214148. https://doi.org/10.3389/fmicb.2023.1214148.
17. Crannell Z., Rohrman B., Richards-Kortum R. Equipment-free incubation of recombinase polymerase amplification reactions using body heat. PLoS One. 2014; 9 (11): 112146. https://doi.org/10.1371/journal.pone.0112146.
18. Andrukov B.G., Lyapyn I.N., Binina M.P. i dr. Yproshennie formati sovremennih biosensorov: 60 let ispolzovaniya immynohromatograficheskih test-sistem v laboratornoi diagnostike. Klinicheskaya laboratornaya diagnostika. 2020; 65 (10): 611-618. http://dx.doi.org/10.18821/0869-2084-2020-65-10-611-618.
19. Xi Y., Xu C., Xie Z. et al. Rapid and visual detection of dengue virus using recombinase polymerase amplification method combined with lateral flow. Molecular and Cellular Probes. 2019; 46: 101413. https://doi.org/10.1016/j.mcp.2019.06.003.
20. TwistAmp® DNA Amplification Kits: assay design manual. United Kingdom. TwistDX; 2018.
21. Chao S., Belinskaya T., Zhang Z. et al. Development of recombinase polymerase amplification assays for detection of Orientia tsutsugamushi or Rickettsia typhi. PLoS Neglected Tropical Diseases. 2015; 9 (7): 3884. https://doi.org/10.1371/journal.pntd.0003884.
22. Liu W., Liu H.-X., Zhang L. et al. A novel isothermal assay of Borrelia burgdorferi by recombinase polymerase amplification with lateral flow detection. Intertnational Journal of Molecular Sciences. 2016; 17 (8): 1250. https://doi.org/10.3390/ijms17081250.
23. Escadafal C., Faye O., Sall A.A. et al. Rapid molecular assays for the detection of yellow fever virus in low-resource settings. PLoS Neglected Tropical Diseases. 2014; 8: 2730-2738. https://doi.org/10.1371/journal.pntd.0002730.
24. James A., Todd S., Pollak N. et al. Ebolavirus diagnosis made simple, comparable and faster than molecular detection methods: preparing for the future. Virology Journal. 2018; 15: 75-81. https://doi.org/10.1186/s12985-018-0985-8.
25. Lai M., Ooi C., Lau Y. Recombinase Polymerase Amplification Combined with a Lateral Flow Strip for the Detection of Plasmodium knowlesi. Journal of Tropical Medicine and Hygiene. 2018; 98: 700-703. https://doi.org/10.4269/ajtmh.17-0738.
26. Piepenburg O., Williams C.H., Stemple D.L. et al. DNA detection using recombination proteins. PLoS Biology. 2006; 4: 204-211. https://doi.org/10.4269/ajtmh.17-0738.
27. Fan G.H., Shen X.X., Li F. et al. Development of an internally controlled reverse transcription recombinase-aided amplification assay for the rapid and visual detection of West Nile virus. Biomedical and environment sciences. 2019; 32 (12): 926-929. https://doi.org/10.3967/bes2019.116.
28. Li X., Shen X., Li M. et al. Applicability of duplex real time and lateral flow strip reverse-transcription recombinase aided amplification assays for the detection of Enterovirus 71 and Coxsackievirus A16. Virology Journal. 2019; 16: 166-175. https://doi.org/10.1186/s12985-019-1264-z.