Application of cyclodextrins to optimize the pharmaceutical properties of preparations in the creation of dosage forms (Review of literature)
Orlova A.B., Ivanov I.М., Sventickaya A.M., Nikiforov A.S.
FSBI «State Research Testing Institute of Military Medicine» of the Ministry of Defense of the Russian Federation
Brief summary
Cyclodextrins (CD) have found wide application in the field of creating dosage forms of drugs that do not have optimal physico-chemical and pharmaceutical properties (low aqueous solubility, low stability in solutions, pronounced local irritant effect). The effectiveness and expediency of using TSD in dosage forms is confirmed by a considerable number of medicines approved for clinical use based on them. The review provides general information about CD and examples of approved drugs based on them, characterizes their own toxicity in different routes of administration. The mechanisms of reducing the local irritant effect of drugs in combination with CD are considered. Examples of the use of CD for the creation of parenteral, oral, inhalation, ophthalmic and intranasal forms of medicines are systematized.
Key words
сyclodextrin, supramolecular system, dosage form, stability, local irritant effect, bioavailability, nasal dosage form
1. Jambhekar S.S., Breen P. Cyclodextrins in pharmaceutical formulations I: structure and physicochemical properties, formation of complexes, and types of complex. Drug discovery today. 2016; 21 (2): 356-362.
2. Khan N.A., Durakshan M. Cyclodextrin: an overview. Intarnational Journal of Bioassays. 2013; 2 (6): 858-865.
3. Carrier R.L., Miller L.A., Ahmed I. The utility of cyclodextrins for enhancing oral bioavailability. Journal of Controlled Release. 2007; 123 (2): 78-99.
4. Brewster M.E., Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Advanced drug delivery reviews. 2007; 59 (7): 645-666.
5. Kurkov S.V., Loftsson T. Cyclodextrins. International journal of pharmaceutics. 2013; 453 (1): 167 - 180.
6. Gould S., Scott R.C. 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): a toxicology review. Food Chem. Toxicol. 2005; 43: 1451-1459.
7. European Medicines Agency (EMA). (2017). Cyclodextrins used as excipients. Report published in support of the ‘Questions and answers on cyclodextrins used as excipients in medicinal products for human use’. EMA/CHMP/495747/2013.
8. Poulson.B.G., Alsulami Q.A., Sharfalddin A. et al. Cyclodextrins: Structural, chemical and physical properties and applications. Polysaccharides. 2021; 3 (1): 1-31.
9. Jacob S., Nair A.B. Cyclodextrin complexes: Perspective from drug delivery and formulation. Drug development research. 2018; 79 (5): 201-217.
10. Zia V., Rajewski R.A., Stella V.J. Effect of cyclodextrin charge on complexation of neutral and charged substrates: comparison of SBEβCD to HPβCD. Pharmaceutical Research. 2001; 18, (5): 667-673.
11. Vranic E., Uzunovic A. Dissolution studies of physical mixtures of indomethacin with alpha- and gamma-cyclodextrins. Bosnian Journal of Basic Medical Sciences. 2010; 10 (3): 197.
12. Loftsson T., Brewster M.E. Pharmaceutical applications of cyclodextrins: effects on drug permeation through biological membranes. Journal of Pharmacology. 2011; 63 (9): 1119-1135.
13. McEwen J. Clinical pharmacology of piroxicam-β-cyclodextrin. Clinical Drug Investigation. 2000; 19 (2): 27-31.
14. Ghanghoria R., Kesharwani P., Agashe H.B. et al. Transdermal delivery of cyclodextrin solubilized curcumine. Drug Delivery and translational research. 2013; 3: 272-285.
15. Zhao Y., Sun C., Shi F. et al. Preparation, characterization and pharmacokinetics study of capsaicin via hydroxypropyl-beta-cyclodextrin encapsulation. Pharmaceutical biology. 2016; 54 (1): 130-138.
16. Kim J.H., Lee S.K., Ki M.H. et al. Development of parenteral formulation for a novel angiogenesis inhibitor, CKD-732 through complexation with hydroxypropyl-β-cyclodextrin. International journal of pharmaceutics. 2004; 272: 79-89.
17. Loftsson T., Stefansson E. Cyclodextrins and topical drug delivery to the anterior and posterior segments of the eye. International journal of pharmaceutics. 2017; (2): 413-423.
18. Challa R., Ahuja A., Ali J., Khar R. Cyclodextrins in Drug Delivery: An Updated Review. Aaps Pharmscitech. 2005; (6) 2: 329-357.
19. Sigurjónsdóttir J.F., Loftsson T., Másson M. Influence of cyclodextrins on the stability of the peptide salmon calcitonin in aqueous solution. International journal of pharmaceutics. 1999; 186 (2): 205-213.
20. Jarho P., Vander Velde D., Stella V.J. Cyclodextrin-catalyzed deacetylation of spironolactone is pH and cyclodextrin dependent. Journal of pharmaceutical sciences. 2000; 89 (2): 241-249.
21. Jansook P., Ogawa N., Lotsoon T. Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. International journal of pharmaceutics. 2018; 535 (1-2): 272-284.
22. Mouton J.W., van Peer A., de Beule K. et al. Pharmacokinetics of itraconazole and hydroxyitraconazole in healthy subjects after single and multiple doses of a novel formulation. Antimicrobial agents and chemotherapy. 2006; 50 (12): 4096-4102.
23. Saokham P., Muankaew C., Jansook P. et al. Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules. 2018; 23 (5): 1161.
24. Loffson T. Cyclodextrins in parenteral formulations. Journal of Pharmaceutical Sciences. 2021; 110 (2): 654- 664.
25. Loftsson T., Jarho P., Masson M. et al. Cyclodextrins in drug delivery. Expert opinion on drug delivery. 2005; 2 (2): 335-351.
26. Fahr A., Liu X. Drug delivery strategies for poorly wather-soluble drugs. Expert opinion on drug delivery. 2007; 4 (4): 403-416.
27. Skiba M., Bounoure F., Barbot C. et al. Development of cyclodextrin microspheres for pulmonary drug delivery. Journal of Pharmacy and Pharmaceutical Sciences. 2005; 8 (3): 409-418.
28. Mccallion O.N., Taylor K.M., Thomas M., Taylor A.J. Nebulization of fluids of different physico-chemical properties with air-jet and ultrasonic nebulizers. Pharmaceutical research. 1995; 12: 1682-1688.
29. Evrard B., Bertholet P., Gueders M. et al. Cyclodextrins as a potential carrier in drug nebulization. Journal of Controlled Release. 2004; 96 (3): 403-410.
30. Cabral Marques H.M., Hadgraft J., Kellaway I.W., Taylor G. Studies of cyclodextrin inclusion complexes. III. The pulmonary absorption of β-, DM-β- and HP-β-cyclodextrins in rabbits. International journal of pharmaceutics. 1991; 77 (2-3): 297-302.
31. Srichana T., Suedee R., Reanmongkol W. Cyclodextrin as a potential drug carrier in salbutamol dry powder aerosols: the in vitro deposition and toxicity studies of the complexes. Respiratory medicine. 2001; 95: 513-519.
32. Mahesh Kumar T., Misra A. Pulmonary absorption enhancement of salmon calcitonin. Journal of drug targeting. 2004; 12 (3): 135-144.
33. Fukaya H., Limura A., Hoshiko K. et al. A cyclosporin A/maltosyl-alpha-cyclodextrin complex for inhalation therapy of asthma. European Respiratory Journal. 2003; 22 (2): 213-219.
34. Rassu G., Sorrenti M., Catenacci L. et al. Versatile Nasal Application of Cyclodextrins: Excipients and/or Actives? Pharmaceutics. 2021; 13 (8): 1180.
35. Illum L. Transport of drugs from the nasal cavity to the central nervous system. European journal of pharmaceutical sciences. 2000; 11: 1-18.
36. Illum L. Is nose-to-brain transport of drugs in man a reality? Journal of pharmacy and pharmacology. 2004; 56: 3-17.
37. Agrawal M., Saraf S., Saraf S. et al. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. Journal of Controlled Release. 2018; 281: 139-177.
38. Hanson L.R., Frey W.H. Strategies for intranasal delivery of therapeutics for the prevention and treatment of neuroAIDS. Journal of Neuroimmune Pharmacology. 2007; 2: 81-86.
39. Casettari L., Illum L. Chitosan in nasal delivery systems for therapeutic drugs. Journal of Controlled Release. 2014; 190: 189-200.
40. Dalpiaz A., Pavan B. Nose-to-brain delivery of antiviral drugs: A way to overcome their active efflux? Pharmaceutics. 2018; 10: 39.
41. Cyclodextrin News, 14 May 2020. Available online: https://cyclodextrinnews.com/2020/02/14/nasal-delivery-with-beta-cyclodextrin-is-approved-a-short-story-of-baqsimi.
42. Jambhekar S.S., Breen P. Cyclodextrins in pharmaceutical formulations I: Structure and physicochemical properties, formation of complexes, and types of complex. Drug Discovery Today. 2016; 21: 356-362.
43. Schrier L., Zuiker R., Merkus F.W. et al. Pharmacokinetics and pharmacodynamics of a new highly concentrated intranasal midazolam formulation for conscious sedation. British journal of clinical pharmacology. 2017; 83 (4): 721-731.
44. Gudmundsdottir H., Sigurjonsdottir J.F., Masson M. et al. Intranasal administration of midazolam in a cyclodextrin based formulation: bioavailability and clinical evaluation in humans. Die Pharmazie. 2001; 56 (12): 963-966.
45. Loftsson T., Gudmundsdóttir H., Sigurjónsdóttir J.F. et al. Cyclodextrin solubilization of benzodiazepines: formulation of midazolam nasal spray. International journal of pharmaceutics. 2001; 212 (1): 29-40.
46. Wermeling D.P., Record K.A., Kelly T.H. et al. Pharmacokinetics and pharmacodynamics of a new intranasal midazolam formulation in healthy volunteers. Anesthesia & Analgesia. 2006; 103 (2): 344-349.
47. Wermeling D.P. Intranasal delivery of antiepileptic medications for treatment of seizures. Neurotherapeutics. 2009; 6 (2): 352-258.
48. Wilson M.T., Macleod S., O’Regan M.E. Nasal/buccal midazolam use in the community. Archives of disease in childhood. 2004; 89: 50 -51.
49. Cirri M., Maestrelli F., Nerli G. et al. Development of a Cyclodextrin-Based Mucoadhesive-Thermosensitive In Situ Gel for Clonazepam Intranasal Delivery. Pharmaceutics. 2021; 13(7): 969.
50. Haschke M., Suter K., Hofmann S. et al. Pharmacokinetics and pharmacodynamics of nasally delivered midazolam. British journal of clinical pharmacology. 2010; 69 (6): 607-616.
51. Kapoor M., Cloyd J.C., Siegel R.A. A review of intranasal formulations for the treatment of seizure emergencies. Journal of Controlled Release. 2016; 237: 147-159.
52. Rincòn-Lòpez J., Almanza-Arjona Y.G., Riascos A.P., Rojas-Aguirre Y. Technological evolution of cyclodextrins in the pharmaceutical field. Journal of Drug Delivery Science and Technology. 2021; 61: 102156.
53. Nonaka N., Farr S.A., Nakamachi T. et al. Intranasal administration of PACAP: Uptake by brain and regional brain targeting with cyclodextrins. Peptides. 2012; 36: 168-175.
54. Prakapenka A.V., Peña V.L., Strouse I. et al. Intranasal 17β-estradiol modulates spatial learning and memory in a rat Model of surgical menopause. Pharmaceutics. 2020; 12: 1225.
55. Zolkowska D., Wu C.Y., Rogawski M.A. Intranasal allopregnanolone confers rapid seizure protection: Evidence for direct nose-to-brain delivery. Neurotherapeutics. 2021; 18: 544-555.
56. Wang X., He H., Leng W., Tang X. Evaluation of brain-targeting for the nasal delivery of estradiol by the microdialysis method. International journal of Pharmaceutics. 2006; 317: 40-46.
57. Rassu G., Soddu E., Cossu M. et al. Solid microparticles based on chitosan or methyl-β-cyclodextrin: A first formulative approach to increase the nose-to-brain transport of deferoxamine mesylate. Journal of Controlled Release. 2015; 201: 68-77.
58. De Oliveira E.R., Truzzi E., Ferraro L. et al. Nasal administration of nanoencapsulated geraniol/ursodeoxycholic acid conjugate: Towards a new approach for the management of Parkinson’s disease. Journal of Controlled Release. 2020; 321: 540-552.
59. Truzzi E., Rustichelli C., de Oliveira Junior E.R. et al. Nasal biocompatible powder of geraniol oil complexed with cyclodextrins for neurodegenerative diseases: Physicochemical characterization and in vivo evidences of nose to brain delivery. Journal of Controlled Release. 2021; 335: 191-202.
60. Giuliani A., Balducci A.G., Zironi E. et al. In vivo nose-to-brain delivery of the hydrophilic antiviral ribavirin by microparticle agglomerates. Drug Delivery. 2018; 25: 376-387.
61. Di Gioia S., Trapani A., Mandracchia D. et al. Intranasal delivery of dopamine to the striatum using glycol chitosan/sulfobutylether-β-cyclodextrin based nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics. 2015; 94: 180-193.
62. Vaka S.R.K., Murthy S.N., Repka M.A., Nagy T. Upregulation of endogenous neurotrophin levels in the brain by intranasal administration of carnosic acid. Journal of pharmaceutical sciences. 2011; 100: 3139-3145.
63. Nakao Y., Horiguchi M., Nakamura R. et al. LARETH-25 and β-CD improve central transitivity and central pharmacological effect of the GLP-2 peptide. International journal of pharmaceutics. 2016; 515: 37-45.
64. Wang Q.S., Li K., Gao L.N. et al. Intranasal delivery of berberine via in situ thermoresponsive hydrogels with non-invasive therapy exhibits better antidepressant-like effects. Biomaterials science. 2020; 8: 2853-2865.
65. Chen W., Li R., Zhu S. et al. Nasal timosaponin BII dually sensitive in situ hydrogels for the prevention of Alzheimer’s disease induced by lipopolysaccharides. International journal of pharmaceutics. 2020; 578: 119115.
66. Qu Y., Sun X., Ma L. et al. Therapeutic effect of disulfiram inclusion complex embedded in hydroxypropyl-β-cyclodextrin on intracranial glioma-bearing male rats via intranasal route. European Journal of Pharmaceutical Sciences. 2021; 156: 105590.
67. Kim T.K., Kang W., Chun I.K. et al. Pharmacokinetic evaluation and modeling of formulated levodopa intranasal delivery systems. European Journal of Pharmaceutical Sciences.. 2009; 38: 525-532.
68. Bshara H., Osman R., Mansour S., El-Shamy A. Chitosan and cyclodextrin in intranasal microemulsion for improved brain buspirone hydrochloride pharmacokinetics in rats. Carbohydrate polymers. 2014; 99: 297-305.
69. Yalcin A., Soddu E., Turunc Bayrakdar E. et al. Neuroprotective effects of engineered polymeric nasal microspheres containing hydroxypropyl-β-cyclodextrin on β-amyloid (1-42)-induced toxicity. Journal of pharmaceutical sciences. 2016; 105: 2372-2380.
70. Liu S., Ho P.C. Intranasal administration of brain-targeted HP-β-CD/chitosan nanoparticles for delivery of scutellarin, a compound with protective effect in cerebral ischaemia. Journal of Pharmacy and Pharmacology. 2017; 69: 1495-1501.
71. Rassu G., Ferraro L., Pavan B. et al. The role of combined penetration enhancers in nasal microspheres on in vivo drug bioavailability. Pharmaceutics. 2018; 10: 206.
72. Lin E.Y., Chen Y.S., Li Y.S. et al. Liposome consolidated with cyclodextrin provides prolonged drug retention resulting in increased drug bioavailability in brain. International Journal of Molecular Sciences. 2020; 21: 4408.
73. Gu F., Fan H., Cong Z. et al. Preparation, characterization, and in vivo pharmacokinetics of thermosensitive in situ nasal gel of donepezil hydrochloride. Acta Pharmaceutica. 2020; 70: 411-422.
74. Zhang L., Yang S., Wong L.R. et al. In vitro and In vivo comparison of curcumin-encapsulated chitosan-coated poly(lactic-co-glycolic acid) nanoparticles and curcumin/hydroxypropyl-beta-cyclodextrin inclusion complexes administered intranasally as therapeutic strategies for Alzheimer’s disease. Molecular pharmaceutics. 2020; 17: 4256-4269.