1Russian Research Institute of Hematology and Transfusiology, Federal Medical and Biological Agency, St. Petersburg
2Federal State Budgetary Institution of Higher Education "North-Western State Medical University named after I.I. Mechnikov" of the Ministry of Health of the Russian Federation
Brief summary
Abstract. The review is devoted to data related to the procurement, storage and quality control of platelet concentrate. The search for a method to assess the functional state of platelets in platelet concentrate is ongoing. However, currently no in vitro test is used in routine practice to characterize transfused platelets and distinguish between an effective and ineffective component.
The purpose of the study. Taking into account the results of the main studies conducted in recent years, to identify a promising approach to assessing the quality of platelet concentrate to improve its efficiency and safety of transfusions.
Materials and methods. The resources of the search engines RINTS and Pub Med were used. The search was conducted in international databases for 2014-2024. Particular attention is paid to the methods for assessing platelet activation in platelet concentrate.
Results. The possibilities and advantages of a rational approach to transfusion of platelet concentrate are described, taking into account the degree of platelet activation in order to optimize the volume of procurement and increase the effectiveness of platelet concentrate in both therapeutic and prophylactic transfusions.
Conclusion. A rational personalized approach to platelet concentrates transfusion taking into account the degree of platelet activation and a potential marker - platelet microparticles - will lead to improved clinical efficacy, determined by an increase in platelet count after transfusion, stable hemostasis and a reduced risk of post-transfusion reactions in recipients.
1. Gaponova T.V., Kapranov N.M., Tihomirov D.S. i dr. Harakteristika osnovnih tendencii v rabote slyjbi krovi Rossiiskoi Federacii v 2016-2020 godah. Gematologiya i transfyziologiya. 2022;67(3):388-397. https://doi.org/10.35754/0234-5730-2022-67-3-388-397.
2. Davaasambyy B., Gricaev S.V., Glazanova T.V. i dr. Effektivnost transfyzii trombokoncentrata pri ostrih mieloidnih leikozah v period provedeniya standartnoi indykcionnoi himioterapii. Klinicheskaya onkogematologiya. Fyndamentalnie issledovaniya i klinicheskaya praktika. 2014; 7(2):213-219.
4. Rymyancev A.G., Madzaev S.R., Filina N.G. i dr. Effektivnost perelivaniya trombocitov. Gematologiya. Transfyziologiya. Vostochnaya Evropa. 2015;2:16-24.
5. Hegde S, Akbar H, Zheng Y, Cancelas JA. Towards increasing shelf life and haemostatic potency of stored platelet concentrates. Curr Opin Hematol. 2018 Nov;25(6):500-508.
6. Arraud N., Linares R., Tan S. et al. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J Thromb Haemost. 2014; 12:614-27.
7. Greening D.W., Simpson R.J., Sparrow R. L. Preparation of platelet concentrates for research and transfusion purposes. Methods Mol. Biol. 2017;1619:31-42.
8. Vasconcelos E., Figueiredo A. C., Seghatchian J. Quality of platelet concentrates derived by platelet rich plasma, buffy coat and apheresis. Transfus Apher Sci. 2003 Aug;29(1):13-16.
9. Bohec P, Gachelin J, Ollivier V. et al. Acoustophoretic purification of platelets: feasibility and impact on platelet activation and function. Platelets. 2019;30(2):174-180.
11. Vucic M, Stanojkovic Z, Antic A, Vucic J, Pavlovic V. Evaluation of platelet activation in leukocyte-depleted platelet concentrates during storage. Bosn J Basic Med Sci. 2018 Feb 20;18(1):29-34. doi: 10.17305/bjbms.2017.2321.
12. Singh S, Shams Hakimi C, Jeppsson A, Hesse C. Platelet storage lesion in interim platelet unit concentrates: A comparison with buffy-coat and apheresis concentrates. Transfus Apher Sci. 2017;56(6):870-874. doi: 10.1016/j.transci.2017.10.004.
13. Wang S, Yuan J, Yang J et al. Advancement of platelet-inspired nanomedicine. Platelets. 2018;29(7):690-694. doi: 10.1080/09537104.2018.1475633
14. Sen Gupta A. Bio-inspired nanomedicine strategies for artificial blood components. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9(6):10.1002/wnan.1464.
16. Shea SM, Thomas KA, Spinella PC. The effect of platelet storage temperature on haemostatic, immune, and endothelial function: potential for personalised medicine. Blood Transfus. 2019;17(4):321-330. doi: 10.2450/2019.0095-19.
17. Milford EM, Reade MC. Comprehensive review of platelet storage methods for use in the treatment of active hemorrhage. Transfusion. 2016;56 (2): 140-148. doi: 10.1111/trf.13504.
18. Bynum JA, Meledeo MA, Getz TM et al. Bioenergetic profiling of platelet mitochondria during storage: 4°C storage extends platelet mitochondrial function and viability. Transfusion. 2016;56 (1):76-84. doi: 10.1111/trf.13337.
19. Ng MSY, Tung JP, Fraser JF. Platelet Storage Lesions: What More Do We Know Now? Transfus Med Rev. 2018 Apr 17: S0887-7963(17)30189-X. doi: 10.1016/j.tmrv.2018.04.001.
20. Jibyrt E.B., Hamitov R.G, Pohabov D.S. i dr. Obnovlenie evropeiskih pravil zagotovki i perelivaniya krovi. Transfyziologiya. 2024; 25(1):30-38.
21. Gorojanskaya E.G., Sviridova S.P., Baikova V.N. i dr. Okislitelnii stress v trombocitah pri onkopatologii. Biomedicinskaya himiya. 2015;61(4):519-525.
22. Maurer-Spurej E, Chipperfield K. Past and future approaches to assess the quality of platelets for transfusion. Transfus Med Rev. 2007;21(4):295-306. doi: 10.1016/j.tmrv.2007.05.005.
23. Aubron C, Flint AWJ, Ozier Y, McQuilten Z. Platelet storage duration and its clinical and transfusion outcomes: a systematic review. Crit Care. 2018 Aug 5;22(1):185.
24. Karpova O.V., Roitman E.V., Ignatova A.A. Ocenka kachestva trombocitnogo koncentrata, zagotovlennogo metodom afereza s ispolzovaniem dobavochnogo rastvora SSP+. Voprosi gematologii, onkologii i immynopatologii v pediatrii. 2014; 13(2): 20-4.
25. Handigund M., Cho Y.G. Insights into platelet storage and the need for multiple approaches. Ann. Clin. Lab. Sci. 2015;45(6):713-9. PMID: 26663804.
26. Sut C, Aloui C, Tariket S et al. Assessment of soluble platelet CD40L and CD62P during the preparation process and the storage of apheresis platelet concentrates: Absence of factors related to donors and donations. Transfus. Clin. Biol. 2018;25(3):192-196. doi: 10.1016/j.tracli.
27. Millar D, Hayes C, Jones J et al. Comparison of the platelet activation status of single-donor platelets obtained with two different cell separator technologies. Transfusion. 2020;60(9):2067-2078. doi: 10.1111/trf.15934.
28. Reddoch-Cardenas KM, Montgomery RK, Lafleur CB et al. Cold storage of platelets in platelet additive solution: an in vitro comparison of two Food and Drug Administration-approved collection and storage systems. Transfusion. 2018;58(7):1682-1688. doi: 10.1111/trf.14603.
31. Noulsri E, Lerdwana S. Quantitation of phosphatidylserine-exposing platelets and platelet-derived microparticles in platelet products: A new strategy to improve efficacy of platelet transfusion. Med Hypotheses. 2020; 145:110306. doi: 10.1016/j.mehy.2020.110306.
32. Antwi-Baffour S., Adjei J., Aryeh C. et al. Understanding the biosynthesis of platelets-derived extracellular vesicles. Immun Inflamm Dis. 2015; 3(3):133-40.
33. Maurer-Spurej E, Brown K, Labrie A et al. Portable dynamic light scattering instrument and method for the measurement of blood platelet suspensions. Physics in Medicine and Biology. 2006;51(15):3747-3758.
34. Marcoux G, Duchez AC, Rousseau M et al. Microparticle and mitochondrial release during extended storage of types of platelet concentrates. Platelets. 2017;28(3):272-280.
35. Maurer-Spurej E., Larsen R., Labrie A. et al. Microparticle content of platelet concentrates ispredicted by donor microparticles and is altered by production methods and stress. Transfusion and Apheresis Science. 2016;55(1):35-43. doi: 10.1016/j.transci.2016.07.010.
36. Cognasse F, Hamzeh-Cognasse H, Laradi S et al. The role of microparticles in inflammation and transfusion: A concise review. Transfus Apher Sci. 2015;53(2):159-67.
37. Labrie A, Marshall A, Bedi H, Maurer-Spurej E. Characterization of platelet concentrates using dynamic light scattering. Transfus Med Hemother. 2013;40(2):93-100.
38. Elvira L, Fernández A, León L et al. Evaluation of the Cell Concentration in Suspensions of Human Leukocytes by Ultrasound Imaging: The Influence of Size Dispersion and Cell Type. Sensors (Basel). 2023;23(2):977. doi: 10.3390/s23020977.
39. Maurer-Spurej E, Chipperfield K. Could Microparticles Be the Universal Quality Indicator for Platelet Viability and Function? J Blood Transfus. 2016;2016:6140239.
40. Saas P, Angelot F, Bardiaux L et al. Phosphatidylserine-expressing cell by-products in transfusion: A pro-inflammatory or an anti-inflammatory effect? Transfus Clin Biol. 2012 Jun;19(3):90-7. doi: 10.1016/j.tracli.2012.02.002.
42. Pienimaeki-Roemer A., Kuhlmann K., Böttcher A et al. Lipidomic and proteomic characterization of platelet extracellular vesicle subfractions from senescent platelets. Transfusion. 2015;55(3):507-521. doi: 10.1111/trf.12874.
43. Yan Y, Zhang J, Zhang Q et al. The role of microRNAs in platelet biology during storage. Transfus Apher Sci. 2017;56(2):147-150. doi: 10.1016/j.transci.2016.10.010.
44. Mukai N, Nakayama Y, Ishi S et al. Cold storage conditions modify microRNA expressions for platelet transfusion. PLoS One. 2019;14(7): e0218797. doi: 10.1371/journal.pone.0218797.
45. Elgendy W, Swelem R, Aboudiba N, Elwafa RA. Role of MicroRNA-326 and its Target Genes Bcl-xL and Bak as Potential Markers in Platelet Storage Lesion in Blood Banks. Indian J Hematol Blood Transfus. 2022 Oct;38(4):731-738. doi: 10.1007/s12288-022-01542-0.
46. Singh S, Shams Hakimi C, Jeppsson A, Hesse C. Platelet storage lesion in interim platelet unit concentrates: A comparison with buffy-coat and apheresis concentrates. Transfus Apher Sci. 2017;56(6):870-874. doi: 10.1016/j.transci.2017.10.004.
47. Raczat T, Kraemer L, Gall C et al. The influence of four different anticoagulants on dynamic light scattering of platelets. Vox Sang. 2014;107(2):196-199.
48. Kanzler P, Mahoney A, Leitner G et al. Microparticle detection to guide platelet management for the reduction of platelet refractoriness in children - A study proposal. Transfus Apher Sci. 2017;56(1):39-44. doi: 10.1016/j.transci.2016.12.016.
49. Sigle JP, Medinger M, Stern M et al. Prospective change control analysis of transfer of platelet concentrate production from a specialized stem cell transplantation unit to a blood transfusion center. J Clin Apheresis. 2012;27:178-182.
50. Black A., Pienimaeki-Roemer A., Kenyon O et al. Platelet-derived extracellular vesicles in plateletpheresis concentrates as a quality control approach. Transfusion. 2015;55(9):2184-2196. doi: 10.1111/trf.13128.
51. Apelseth T. O., Bruserud Ø., Wentzel-Larsen T., Hervig T. Therapeutic efficacy of platelet transfusion in patients with acute leukemia: an evaluation of methods. Transfusion. 2010;50(4):766-775. doi: 10.1111/j.1537-2995.2009.02540.x.
52. Johnson L., Tan S., Wood B. et al. Refrigeration and cryopreservation of platelets differentially affect platelet metabolism and function: a comparison with conventional platelet storage conditions. Transfusion. 2016;56(7):1807-1818. doi: 10.1111/trf.13630.
53. Millar D, Murphy L, Labrie A, Maurer-Spurej E. Routine Screening Method for Microparticles in Platelet Transfusions. J Vis Exp. 2018:31;(131):56893. doi: 10.3791/56893.
55. Ramsey M.T., Fabian T.C., Shahan C.P. et al. A prospective study of platelet function in trauma patients. J Trauma. Acute Care Surgery. 2016; 80 (5): 726-33.
56. Ponomarenko E.A., Ignatova A.A., Fedorova D.V. i dr. Fynkcionalnaya aktivnost trombocitov: fiziologiya i metodi laboratornoi diagnostiki. Voprosi gematologii/onkologii i immynopatologii v pediatrii. 2019; 18 (3): 112‒119.
57. Xu Y., Nakane N., Maurer-Spurej E. Novel test for microparticles in platelet-rich plasma and platelet concentrates using dynamic light scattering. Transfusion. 2011;51(2):363-370. doi: 10.1111/j.1537-2995.2010.02819.x
58. Foster B. P., Balassa T., Benen T. D. et al. Extracellular vesicles in blood, milk and body fluids of the female and male urogenital tract and with special regard to reproduction. Critical Reviews in Clinical Laboratory Sciences. 2016:1-17.
59. Simak J., Gelderman M. P. Cell membrane microparticles in blood and blood products: potentially pathogenic agents and diagnostic markers. Transfusion Medicine Reviews. 2006;20(1):1-26. doi: 10.1016/j.tmrv.2005.08.001.
60. Boilard E., Duchez A.-C., Brisson A. The diversity of platelet microparticles. Current Opinion in Hematology. 2015;22(5):437-444. doi: 10.1097/MOH.0000000000000166.
61. Sirotkina O.V. Issledovanie fynkcionalnoi aktivnosti trombocitov: istoriya, sovremennost, perspektivi. Molekylyarno-biologicheskie tehnologii v medicinskoi praktike. 2010; 15:60-74.