The role of retinal imaging in neurodegenerative diseases. Part 1.
Alzheimer's disease
Kolesnikova E.T.1, Tultseva S.N.2
1 Federal State Budgetary Educational Institution of Higher Education «Izhevsk State Medical Academy» of the Ministry of Healthcare of Russian Federation. Russia, Udmurt Republic, Izhevsk, Kommunarov street, 281
2 Federal State Budgetary Educational Institution of Higher Education “Academician I.P. Pavlov First St. Petersburg State Medical University” of the Ministry of Healthcare of Russian Federation. Russia, 197022,
Saint-Petersburg, Lva Tolstogo street, 6-8
Brief summary
The literature review is devoted to Alzheimer's disease, one of the most common neurodegenerative diseases. It is known that diagnosis and treatment in the early stage of Alzheimer's disease can potentially improve the prognosis of the disease by preventing or slowing down the processes of neurodegeneration. It is especially important to search for new non-invasive and affordable biomarkers for early diagnosis and assessment of the progression of this disease.
The retina and the brain share a common embryonic origin and are similar in anatomical structure. It can be assumed that it is the retina, which is well accessible for visualization, that can be the object of screening for Alzheimer's disease. This explains the attention that has been paid in recent years to optical coherence tomography, which is actively used in ophthalmology. This technique is accessible, non-contact and non-invasive, which means it can be used to fix the earliest changes in nervous tissue. Lifetime studies of the nerve fibers of the retina and optic nerve seem to be the most promising.
The article provides an overview of the currently available global data on the use of optical coherence tomography and optical coherence tomography with angiography to search for and evaluate patterns of fundus changes typical for Alzheimer's disease.
Using optical coherence tomography, were discovered and described primary intraretinal amyloid deposits. These deposits were mainly found in the peripheral parts of the upper quadrants of the retina as well as in the perivasal area. Methods of lifetime detection of amyloid plaques in patients with Alzheimer's disease are very interesting and promising, but require further study.
The main measurements assess the thickness of the retinal nerve fiber layer in the peripapillary and macular regions, as well as in individual retinal quadrants. Additionally, the thickness of the macular ganglion cell layer and the thickness of the ganglion cell complex were evaluated. In most studies, a significant decrease in the parameters of the nerve fiber layer and ganglion cell complex was found in patients with Alzheimer's disease, including early stages of the disease. Further research and standardization of the data obtained are required for screening and early diagnosis, as well as assessment of the dynamics of the course of Alzheimer's disease.
1. Reitz C., Brayne C., Mayeux R. Epidemiology of Alzheimer disease. Nat. Rev. Neurol. 2011; 7: 137-52. doi:10.1038/nrneurol.2011.2
2. Brookmeyer R., Abdalla N., Kawas C.H., et al. Forecasting the prevalence of preclinical and clinical Alzheimer’s disease in the United States. Alzheimers Dement. 2018; 14: 121-9. doi:10.1016/j.jalz.2017.10.009
3. Holtzman D.M., Morris J.C., Goate A.M. Alzheimer’s Disease: The Challenge of the Second Century. Sci. Transl. Med. 2011; 3. doi:10.1126/scitranslmed.3002369
4. Sperling R.A., Rentz D.M., Johnson K.A., et al. The A4 Study: Stopping AD Before Symptoms Begin? Sci. Transl. Med. 2014; 6. doi:10.1126/scitranslmed.3007941
5. Stelzmann R.A., Norman Schnitzlein H., Reed Murtagh F. An english translation of alzheimer’s 1907 paper, “Uber eine eigenartige erkankung der hirnrinde.” Clin. Anat. 1995; 8: 429-31. doi:10.1002/ca.980080612
6. Petersen R.C., Smith G.E., Waring S.C., et al. Mild Cognitive Impairment: Clinical Characterization and Outcome. Arch. Neurol. 1999; 56: 303. doi:10.1001/archneur.56.3.303
7. Wang C.., Holtzman D.M. Bidirectional relationship between sleep and Alzheimer’s disease: role of amyloid, tau, and other factors. Neuropsychopharmacology. 2020; 45: 104-20. doi:10.1038/s41386-019-0478-5
8. Perrin R.J., Fagan A.M., Holtzman D.M. Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature. 2009; 461: 916-22. doi:10.1038/nature08538
9. Rudrabhatla P., Jaffe H., Pant H.C. Direct evidence of phosphorylated neuronal intermediate filament proteins in neurofibrillary tangles (NFTs): phosphoproteomics of Alzheimer’s NFTs. FASEB J. 2011; 25: 3896-905. doi:10.1096/fj.11-181297
11. Choi S.H., Kim Y.H., Hebisch M., et al. A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature. 2014; 515: 274-8. doi:10.1038/nature13800
12. Ontiveros-Torres M.Á., Labra-Barrios M.L., Díaz-Cintra S., et al. Fibrillar Amyloid-β Accumulation Triggers an Inflammatory Mechanism Leading to Hyperphosphorylation of the Carboxyl-Terminal End of Tau Polypeptide in the Hippocampal Formation of the 3×Tg-AD Transgenic Mouse. J. Alzheimers Dis. 2016; 52: 243-69. doi:10.3233/JAD-150837
13. Jack C.R., Bennett D.A., Blennow K., et al. NIA‐AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018; 14: 535-62. doi:10.1016/j.jalz.2018.02.018
15. Klunk W.E., Engler H., Nordberg A., et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B: Imaging Amyloid in AD with PIB. Ann. Neurol. 2004; 55: 306-19. doi:10.1002/ana.20009
16. Hyman B.T., Phelps C.H., Beach T.G., et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement. 2012; 8: 1-13. doi:10.1016/j.jalz.2011.10.007
17. Klafki H.W., Staufenbiel M., Kornhuber J., et al. Therapeutic approaches to Alzheimer’s disease. Brain. 2006; 129: 2840-55. doi:10.1093/brain/awl280
18. Kueper J.K., Speechley M.., Montero-Odasso M. The Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog): Modifications and Responsiveness in Pre-Dementia Populations. A Narrative Review. J. Alzheimers Dis. 2018; 63: 423-44. doi:10.3233/JAD-170991
19. Graham D.P., Cully J.A., Snow A.L., et al. The Alzheimer’s Disease Assessment Scale-Cognitive subscale: normative data for older adult controls. Alzheimer Dis. Assoc. Disord. 2004; 18: 236-40.
20. Borson S., Scanlan J., Brush M., et al. The Mini-Cog: a cognitive “vital signs” measure for dementia screening in multi-lingual elderly. Int. J. Geriatr. Psychiatry. 2000; 15: 1021-7. doi:10.1002/1099-1166(200011)15:11<1021::AID-GPS234>3.0.CO;2-6
21. Chen Y.J., Deutsch G., Satya R., et al. A semi-quantitative method for correlating brain disease groups with normal controls using SPECT: Alzheimer’s disease versus vascular dementia. Comput. Med. Imaging Graph. 2013; 37: 40-7. doi:10.1016/j.compmedimag.2012.11.001
22. Chandra A., Dervenoulas G.., Politis M. Magnetic resonance imaging in Alzheimer’s disease and mild cognitive impairment. J. Neurol. 2019; 266: 1293-302. doi:10.1007/s00415-018-9016-3
23. Duara R., Grady C., Haxby J., et al. Positron emission tomography in Alzheimer’s disease. Neurology. 1986; 36: 879-879. doi:10.1212/WNL.36.7.879
24. Guzman-Martinez L., Maccioni R.B., Farías G.A., et al. Biomarkers for Alzheimer’s Disease. Curr. Alzheimer Res. 2019; 16: 518-28. doi:10.2174/1567205016666190517121140
25. Porsteinsson A.P., Isaacson R.S., Knox S., et al. Diagnosis of Early Alzheimer’s Disease: Clinical Practice in 2021. J. Prev. Alzheimers Dis. 2021; 1-16. doi:10.14283/jpad.2021.23
26. Blennow K.., Zetterberg H. The Past and the Future of Alzheimer’s Disease Fluid Biomarkers. J. Alzheimers Dis. 2018; 62: 1125-40. doi:10.3233/JAD-170773
27. McGrowder D.A., Miller F., Vaz K., et al. Cerebrospinal Fluid Biomarkers of Alzheimer’s Disease: Current Evidence and Future Perspectives. Brain Sci. 2021; 11: 215. doi:10.3390/brainsci11020215
29. Patton N., Aslam T., MacGillivray T., et al. Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J. Anat. 2005; 206: 319-48. doi:10.1111/j.1469-7580.2005.00395.x
30. Morin P.J., Abraham C.R., Amaratunga A., et al. Amyloid Precursor Protein Is Synthesized by Retinal Ganglion Cells, Rapidly Transported to the Optic Nerve Plasma Membrane and Nerve Terminals, and Metabolized. J. Neurochem. 1993; 61: 464-73. doi:10.1111/j.1471-4159.1993.tb02147.x
31. Li L., Luo J., Chen D., et al. BACE1 in the retina: a sensitive biomarker for monitoring early pathological changes in Alzheimer′s disease. Neural Regen. Res. 2016; 11: 447. doi:10.4103/1673-5374.179057
32. Aumann S., Donner S., Fischer J., et al. Optical Coherence Tomography (OCT): Principle and Technical Realization. In: Bille JF, editor. High Resolution Imaging in Microscopy and Ophthalmology. Cham: Springer International Publishing; 2019. page 59-85.doi:10.1007/978-3-030-16638-0_3
33. Chiasseu M., Alarcon-Martinez L., Belforte N., et al. Tau accumulation in the retina promotes early neuronal dysfunction and precedes brain pathology in a mouse model of Alzheimer’s disease. Mol. Neurodegener. 2017; 12: 58. doi:10.1186/s13024-017-0199-3
34. Blanks J.C., Torigoe Y., Hinton D.R., et al. Retinal pathology in Alzheimer’s disease. I. Ganglion cell loss in foveal/parafoveal retina. Neurobiol. Aging. 1996; 17: 377-84. doi:10.1016/0197-4580(96)00010-3
35. Gupta V.K., Chitranshi N., Gupta V.B., et al. Amyloid β accumulation and inner retinal degenerative changes in Alzheimer’s disease transgenic mouse. Neurosci. Lett. 2016; 623: 52-6. doi:10.1016/j.neulet.2016.04.059
36. Koronyo Y., Biggs D., Barron E., et al. Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer’s disease. JCI Insight. 2017; 2: e93621. doi:10.1172/jci.insight.93621
38. Gilmore G.C., Wenk H.E., Naylor L.A., et al. Motion Perception and Alzheimer’s Disease. J. Gerontol. 1994; 49: P52-7. doi:10.1093/geronj/49.2.P52
39. Risacher S.L., WuDunn D., Pepin S.M., et al. Visual contrast sensitivity in Alzheimer’s disease, mild cognitive impairment, and older adults with cognitive complaints. Neurobiol. Aging. 2013; 34: 1133-44. doi:10.1016/j.neurobiolaging.2012.08.007
40. Ukalovic K., Cao S., Lee S., et al. Drusen in the Peripheral Retina of the Alzheimer’s Eye. Curr. Alzheimer Res. 2018; 15: 743-50. doi:10.2174/1567205015666180123122637
41. Bell R.D.., Zlokovic B.V. Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer’s disease. Acta Neuropathol. (Berl.). 2009; 118: 103-13. doi:10.1007/s00401-009-0522-3
42. Blanks J.C., Schmidt S.Y., Torigoe Y., et al. Retinal pathology in Alzheimer’s disease. II. Regional neuron loss and glial changes in GCL. Neurobiol. Aging. 1996; 17: 385-95. doi:10.1016/0197-4580(96)00009-7
43. Boyle P.A., Yu L., Nag S., et al. Cerebral amyloid angiopathy and cognitive outcomes in community-based older persons. Neurology. 2015; 85: 1930-6. doi:10.1212/WNL.0000000000002175
44. Cunha-Vaz J., Bernardes R., Lobo C. Blood-Retinal Barrier. Eur. J. Ophthalmol. 2011; 21: 3-9. doi:10.5301/EJO.2010.6049
45. Den Haan J., Morrema T.H.J., Verbraak F.D., et al. Amyloid-beta and phosphorylated tau in post-mortem Alzheimer’s disease retinas. Acta Neuropathol. Commun. 2018; 6: 147. doi:10.1186/s40478-018-0650-x
46. Koronyo Y., Rentsendorj A., Mirzaei N., et al. Retinal pathological features and proteome signatures of Alzheimer’s disease. Acta Neuropathol. (Berl.). 2023; 145: 409-38. doi:10.1007/s00401-023-02548-2
47. Shi H., Koronyo Y., Rentsendorj A., et al. Identification of early pericyte loss and vascular amyloidosis in Alzheimer’s disease retina. Acta Neuropathol. (Berl.). 2020; 139: 813-36. doi:10.1007/s00401-020-02134-w
48. Alexandrov P.N., Pogue A., Bhattacharjee S., et al. Retinal amyloid peptides and complement factor H in transgenic models of Alzheimer’s disease. NeuroReport. 2011; 22: 623-7. doi:10.1097/WNR.0b013e3283497334
49. More S.S., Beach J.M., McClelland C., et al. In Vivo Assessment of Retinal Biomarkers by Hyperspectral Imaging: Early Detection of Alzheimer’s Disease. ACS Chem. Neurosci. 2019; 10: 4492-501. doi:10.1021/acschemneuro.9b00331
50. Harrison I.F., Whitaker R., Bertelli P.M., et al. Optic nerve thinning and neurosensory retinal degeneration in the rTg4510 mouse model of frontotemporal dementia. Acta Neuropathol. Commun. 2019; 7: 4. doi:10.1186/s40478-018-0654-6
51. Walkiewicz G., Ronisz A., Van Ginderdeuren R., et al. Primary retinal tauopathy: A tauopathy with a distinct molecular pattern. Alzheimers Dement. 2024; 20: 330-40. doi:10.1002/alz.13424
52. Ashraf G., McGuinness M., Khan M.A., et al. Retinal imaging biomarkers of Alzheimer’s disease: A systematic review and meta‐analysis of studies using brain amyloid beta status for case definition. Alzheimers Dement. Diagn. Assess. Dis. Monit. 2023; 15: e12421. doi:10.1002/dad2.12421
53. Berisha F., Feke G.T., Trempe C.L., et al. Retinal Abnormalities in Early Alzheimer’s Disease. Investig. Opthalmology Vis. Sci. 2007; 48: 2285. doi:10.1167/iovs.06-1029
54. Armstrong R.A. Visual Field Defects in Alzheimer’s Disease Patients May Reflect Differential Pathology in the Primary Visual Cortex. Optom. Vis. Sci. 1996; 73: 677-82. doi:10.1097/00006324-199611000-00001
55. Gylieva R.N. Izmeneniya setchatki pri bolezni Alcgeimera. Vestnik oftalmologii. 2020;136(3):74‑78. doi: 10.17116/oftalma202013603174
56. Bayhan H.A., Aslan Bayhan S., Celikbilek A., et al. Evaluation of the chorioretinal thickness changes in A lzheimer’s disease using spectral‐domain optical coherence tomography. Clin. Experiment. Ophthalmol. 2015; 43: 145-51. doi:10.1111/ceo.12386
57. Ascaso F.J., Cruz N., Modrego P.J., et al. Retinal alterations in mild cognitive impairment and Alzheimer’s disease: an optical coherence tomography study. J. Neurol. 2014; 261: 1522-30. doi:10.1007/s00415-014-7374-z
58. Gao L., Liu Y., Li X., et al. Abnormal retinal nerve fiber layer thickness and macula lutea in patients with mild cognitive impairment and Alzheimer’s disease. Arch. Gerontol. Geriatr. 2015; 60: 162-7. doi:10.1016/j.archger.2014.10.011
59. Polo V., Garcia-Martin E., Bambo M.P., et al. Reliability and validity of Cirrus and Spectralis optical coherence tomography for detecting retinal atrophy in Alzheimer’s disease. Eye. 2014; 28: 680-90. doi:10.1038/eye.2014.51