СОДЕРЖАНИЕ ЖУРНАЛА:
Адрес редакции и реквизиты
192012, Санкт-Петербург, ул.Бабушкина, д.82 к.2, литера А, кв.378
Свидетельство о регистрации электронного периодического издания ЭЛ № ФС 77-37726 от 13.10.2009
Выдано - Роскомнадзор
ISSN 1999-6314
Vol. 25, Art. 22 (pp. 383-421) | 2024
Microcirculation and oxydative metabolism measured by laser doppler flowmetry and laser fluorescent spectroscopy and its role in bowel anastomosis leakage assessment
Trushin A.A., *Kursenko R.V., Vervekin I.V., Ten O.A., Belyaev M.A., Zakharenko A.A.
First Pavlov State Medical University of St. Petersburg
Brief summary
Background. Intraoperative objective noninvasive assessment of bowel
viability has remained unresolved surgical problem. Laser fluorescent spectroscopy
(LFS) of oxidative metabolism and laser doppler flowmetry (LDF) of
microcirculation were shown as promising tools in previous experimental studies.
Reference numerical rates of LDF and LFS for intraoperative bowel viability
assessment and it?s role in anastomotic leakage risk assessment are seemed to be
useful in clinical practice.
Materials and methods. LDF and LFS numerical rates of small bowel and
colon were assessed during elective right hemicolectomy after vascular mobilisation.
Frequency of anastomotic leakage and LDF and LFS rates in that cases were
analysed. LDF and LFS were analysed as diagnostic tools in anastomotic leakage risk
assessment.
Results. N=103 patients were included in study. Mean LDF and LFS rates in
viable bowel segments were 27,7+/-1,54p.u. and 1,19+/-0,21r.u. Anastomotic leakage
frequency was 10,7% (n=11).
It was significant microcirculation and oxidative metabolism deterioration by LDF
and LFS in anastomotic leakage cases. Decrease of LDF in more than 24,5% and increase of LFS in more than 88,1% were significant risk factors of anastomotic
leakage (p<0,0001).
Conclusion. Microcirculation and oxidative metabolism deterioration of bowel
diagnosed intraoperatively by LDF and LFS are significant risk factors for
anastomotic leakage. LDF and LFS are clinically useful for intraoperative bowel
viability assessment.
Key words
microcirculation; anastomotic leakage; bowel viability; autofluorescence; NADH
(The article in PDF format. For preview need Adobe Acrobat Reader)
Open article in new window
Reference list
Sartelli M. The challenge of post-operative peritonitis after gastrointestinal surgery. Updates Surg. 2015; 67(4): 373-381. 2. 2015 European Society of Coloproctology collaborating group. The relationship between method of anastomosis and anastomotic failure after right hemicolectomy and ileocaecal resection: an international snapshot audit. Colorectal Dis. 2017; 38(1): 42-49. 3. Kashenko V.A., Lodigin A.V., Volkova E.S. i dr. ICG-flyorescentnaya navigaciya v kolorektalnoi hiryrgii. Klinicheskaya bolnica. 2019; (28)2: 12-17. [Kashchenko V.A., Lodygin A.V., Volkova E.S., Napalkov A.N., Korobicyna A.M. ICG-fluorescent navigation in colorectal surgery. The Hospital No 2. 2019; 2(28): 12-7. (in Russian)]. 4. Dyess D.L., Bruner B.W., Donnell C.A., et al. Intraoperative evaluation of intestinal ischemia: a comparison of methods. South Med. J. 1991; 84(8): 966- 974. 5. Kingham T.P., Pachter H.L. Colonic Anastomotic Leak: Risk Factors, Diagnosis, and Treatment. J. Am. College Surg. 2009(2): 269-278. 6. Urbanavičius L., Pattyn P., Putte D.V., Venskutonis D. How to assess intestinal viability during surgery: A review of techniques. World J. Gastrointest Surg. 2011; 3(5): 59-69. 7. Horgan P.G., Gorey T.F. Operative assessment of intestinal viability. Surg. Clin. North Am. 1992; 72: 143-155. MEDLINE.RU, TOM 25, HIRYRGIYa, 10 IUNYa 2024 419 8. Karliczek A., Harlaar N.J., Zeebregts C.J.. et al. Surgeons lack predictive accuracy for anastomotic leakage in gastrointestinal surgery. Int. J. Colorectal Dis. 2009; 24(5). 569-576. 9. Bulkley G.B., Zuidema G.D., Hamilton S.R., et al. Intraoperative determination of small intestinal viability following ischemic injury: a prospective, controlled trial of two adjuvant methods (Doppler and fluorescein) compared with standard clinical judgment. Ann. Surg. 1981; 193: 628-637. 10. Strand-Amundsen R.J., Reims H.M., Reinholt F.P., et al. Ischemia/reperfusion injury in porcine intestine - Viability assessment. World J. Gastroenterol. 2018; 24(18): 2009-2023. 11. Vignali A., Gianotti L., Braga M., et al. Altered microperfusion at the rectal stump is predictive for rectal anastomotic leak Dis. Colon Rectum. 2000; 43(1): 76-82. 12. Chiu C.J., McArdle A.H., Brown R., et al. Intestinal mucosal lesion in low-flow states. Arch. Surg. 1970; 101(4): 478-483. doi: 10.1001/ archsurg.1970.01340280030009. 13. Blikslager A.T., Moeser A.J., Gookin J.L., et al. Restoration of barrier function in injured intestinal mucosa. Physiol. Rev. 2007; 87: 545-564. 14. Vlasov T.D., Kornushin O.V., Papayan G.V. Vozmojnosti aytoflyorescentnoi organoskopii pri ishemicheskom i reperfyzionnom povrejdenii tonkoi kishki in vitro. Regionarnoe krovoobrashenie i mikrocirkylyaciya. 2009; 2: 73-75. [Vlasov T.D., Kornjushin O.V., Papajan G.V. Possibilities of autofluorescence organoscopy in ischemic and reperfusion injury of the small intestine in vitro. Regionarnoe krovoobrashhenie i mikrocirkuljacija. 2009; 2: 73-75. (In Russian)]. 15. Rose, J. High-resolution intravital NADH fluorescence microscopy allows measurements of tissue bioenergetics in rat ileal mucosa. Microcirculation. 2006; 13(1): 41-47. MEDLINE.RU, TOM 25, HIRYRGIYa, 10 IUNYa 2024 420 16. Sidorov V.V., Ribakov U.A., Gykasov V.M. Diagnosticheskii podhod dlya ocenki sostoyaniya mikrocikylyatorno-tkanevoi sistemi s ispolzovaniem lazernih tehnologii i temperatyrnoi fykcionalnoi probi. Innovatika i ekspertiza. 2018; 22(1): 135-141. [Sidorov V.V., Rybakov Ju.A., Gukasov V.M. A diagnostic approach to assessing the state of the microcirculatory tissue system using laser technologies and temperature functional testing. Innovatika i jekspertiza. 2018; 22(1): 135-141. (In Russian)]. 17. Klauke H., Minor T., Vollmar B., et al. Microscopic analysis of NADH fluorescence during aerobic and anaerobic liver preservation conditions: A noninvasive technique for assessment of hepatic metabolism. Cryobiology. 1998; 36(2): 108-114. doi: 10.1006/cryo.1997.2068. 18. Zaharenko A.A., Belyaev M.A., Tryshin A.A., i dr. Kombinirovannaya ocenka jiznesposobnosti kishki metodami lazernoi dopplerovskoi floymetrii i lazernoi flyorescentnoi spektroskopii. Regionarnoe krovoobrashenie i mikrocirkylyaciya. 2021; 20(2): 70-76. https://doi.org/10.24884/1682-6655- 2021-20-2-70-76 [Zaharenko A.A., Beljaev M.A., Trushin A.A., et al. Combined assessment of intestinal viability using laser Doppler flowmetry and laser fluorescence spectroscopy. Regionarnoe krovoobrashhenie i mikrocirkuljacija. 2021; 20(2): 70-76. (In Russian)]. 19. Hripyn A.I., Pryamikov A.D., Shyrigin S.N., i dr. Lazernaya dopplerovskaya floymetriya v vibore obema rezekcii kishechnika y bolnih ostrim arterialnim narysheniem mezenterialnogo krovoobrasheniya. Hiryrgiya. Jyrnal im. N.I. Pirogova. 2012; 10: 40-44. [Hripun A.I., Prjamikov A.D., Shurygin S.N., et al. Laser Doppler flowmetry in choosing the volume of intestinal resection in patients with acute arterial disturbance of mesenteric circulation. Hirurgija. Zhurnal im. N.I. Pirogova. 2012; 10: 40-44. (In Russian)]. 20. Belyaev A.M., Syrov D.A., Semencov K.V. Odnoetapnie operacii pri levostoronnei tolstokishechnoi neprohodimosti. Vestnik hiryrgii im. I.I. Grekova. 2010; 169(4): 36-38. [Beljaev A.M., Surov D.A., Semencov K.V. One-stage operations for left-sided colonic obstruction. Vestnik hirurgii im. I.I. Grekova. 2010; 169(4): 36-38. (In Russian)]