Hapten-carrier conjugates with haptens-analogues of psychoactive substances and toxicants: algorithms for modeling the molecular structure of alkaloid haptene epitopes in designing
of immunogenic antigens
1 Scientific and clinical center of toxicology named after academician S.N. Golikov FMBA
of Russia, 192019, St. Petersburg, st. Bekhtereva 1.;
2 St. Petersburg State University, St. Petersburg, Mendeleevskaya line 2;
3 St. Petersburg State Pediatric Medical University of the Ministry of Health of Russia, 194100, Russian Federation, St. Petersburg, st. Lithuanian 2;
4 Federal State Budgetary Educational Institution of Higher Education Russian State Pedagogical University. A.I. Herzen 191186, Russian Federation, St. Petersburg, emb. Moika River, 48.
Brief summary
Based on the analysis of the available literature data and the authors' own experience in the field of constructing conjugated antigens with hapten analogues of psychoactive and neurotoxic alkaloids, the principles of giving hapten epitopes the property of immunodominance in the composition of antigens (immunogens) and approaches (algorithms) for modeling the molecular structure of hapten epitopes that determine their specificity are described. Algorithms for ensuring the target specificity of hapten epitopes in the composition of conjugated antigens (immunogens) used for the purposes of active immunization are summarized on specific examples of obtaining conjugated antigens with hapten analogues of psychoactive and neurotoxic alkaloids: morphine alkaloids - opiates; tropane alkaloids - cocaine, atropine, scopolamine, hyoscyamine; tropolone alkaloid - colchicine; proaporphine alkaloid - stefarin and some other alkaloids (for example, tobacco alkaloid - nicotine and alkaloid of snowdrop bulbs - galanthamine). Using examples of the synthesis of hapten analogs of psychoactive and neurotoxic alkaloids: morphine and tropane alkaloids, tobacco alkaloids, which are widely used for non-medical purposes as drugs (opiates, cocaine, psychodysleptic alkaloids, nicotine), the most commonly used approaches to optimizing synthesis methods are summarized too. It is postulated that the algorithm for such optimization is determined by the molecular structure of the target ligand and the choice of a specific reactive (functional) group that is introduced into the hapten analog. The methods of hapten analogs synthesis are very diverse. For the purposes of obtaining haptens analogs of psychoactive and toxic alkaloids with a reactive carboxyl group, a universal optimization algorithm is the synthesis of their hemisuccinate derivatives. Using specific examples of hapten analogs with reactive carboxy and amino groups, methods for their conjugation to macromolecular, predominantly protein, carriers are described. Thus, the most widely used methods of chemical conjugation make it possible to obtain immunogens with optimal molecular and immunochemical characteristics for inducing an intense and specific humoral immune response to the hapten epitope.
Key words
psychoactive and neurotoxic alkaloids; narcotic substances; conjugated antigens (hapten-carrier conjugates); haptens analogs of alkaloids; hapten determinants (epitopes); immunochemical specificity; modeling of biological activity and specificity.
1. Colburn W.A. Radioimmunoassay and related immunoassay techniques. In: Pharmaceutical Analysis Modern Methods, Part A. Munson J.W., ed. New York: Marcel Dekker; 1982.
2. Lee J. W., Colburn W.A. Immunoassay Techniques. In: Ohannesian L. and Streeter A.J., eds. Handbook of Pharmaceutical Analysis. New York - Basel: Marcel Dekker; 2002.
3. Butler V.P, Jr. The immunological assay of drugs. Pharmacol. Rev. 1978; 29(2): 103-184.
4. Ren Z., Zhang H., Wang Z. et al. Progress in immunoassays of toxic alkaloids in plant-derived medicines: A Review. Toxins (Basel). 2022. 14(3): 165; https://doi.org/10.3390/toxins14030165
5. De Weck A.L. Low molecular weight antigens. In: The Antigens, V.2. Sela M., eds. N.Y. - San Francisco - London: Academic Press; 1974: 141-248.
6. Kozlov V.K., Bespalov A.Ya., Kashyro V.A., Batocirenova E.G. Iskysstvennie konugirovannie antigeni s gaptenami-analogami psihoaktivnih veshestv i toksikantov: principi konstryirovaniya i yvelicheniya immynogennosti. Medline.ru. Rossiiskii biomedicinskii jyrnal. 2022; 23: 824-855.
8. Kozlov V.K., Bespalov A.Ya., Gaft S.S. Konugati fiziologicheski aktivnih, toksichnih i lekarstvennih soedinenii. V kn.: Kozlov V.K. i dr. Osnovi immynotoksikologii. Tom 1. Obshaya immynotoksikologiya. Immynotoksichnost himicheskih soedinenii. Iniciiryemie toksikantami immynopatologicheskie sostoyaniya i zabolevaniya / pod red. V.K. Kozlova. M.: Kommentarii; 2019: 364-448.
9. Darwish I.A. Immunoassay methods and their applications in pharmaceutical analysis: Basic methodology and recent advances. Int. J. Biomed. Sci. 2006; 2(3):
217-235.
10. Marks V., Fry D.E. Detection and measurement of drugs in biological fluids: Their relevance to the problem of drug abuse. In: Glatt M.M., ed. Drug Dependence. Dordrecht: Springer; 1977: 295-327. https://doi.org/10.1007/978-94-011-6147-3_13
11. Volkov S.K. Immunoassay of low-molecular-mass physiologically active substances of plant and microbial origin encountered in plants. Russian Chemical Reviews. 1994; 63(1): 91. doi: 10.1070/RC1994v063n01ABEH000073
12. Bremer P.T., Janda K.D. Conjugate vaccine immunotherapy for substance use disorder. Pharmacol. Rev. 2017; 69(3): 298-315. doi.org/10.1124/pr.117.013904
13. Reyes A.Z., Hu K.A., Teperman J. et al. Anti-inflammatory therapy for COVID-19 infection: the case for colchicine. Ann. Rheum. Dis. 2021; 80(5):
550-557. doi:10.1136/annrheumdis-2020-219174
14. Tardif J.-Cl., Bouabdallaoui N., L'Allier Ph.L. et al. Colchicine for community-treated patients with COVID-19 (COLCORONA): a phase 3, randomised, double-blinded, adaptive, placebo-controlled, multicentre trial. The Lancet Resp. Med. 2021; 9(8): 924-932. doi:10.1016/S2213-2600(21)00222-8
15. Pontikis R., Scherrmann J.M., Nguyen H.N. et al. Radioimmunoassay for colchicine: Synthesis and properties of three haptens. J. Immunoassay. 1980; 1(4): 449-461. doi: 10.1080/15321818008056965
16. Sabouraud A., Cano N, Scherrmann J.M. Radioimmunoassay of colchicine with antisera exhibiting variable cross-reactivity. Ther. Drug Monit. 1994; 16(2): 179-185. doi: 10.1097/00007691-199404000-00012
17. Boudene C., Duprey F., Bohuon C. Radioimmunoassay of colchicine. Biochem J. 1975; 151(2): 413-415. doi: 10.1042/bj1510413
18. Rouan S.K., Otterness I., Cunningham A.C., Rhodes C.T. Specific, high affinity colchicine binding monoclonal antibodies: development and characterization of the antibodies. Hybridoma.1989; 8(4): 435-448. doi:10.1089/hyb.1989.8.435
19. Danilova N.P., Lyckova S.N., Fadeeva I.I. i dr. Kolichestvennoe opredelenie stefarina tverdofaznim immynofermentnim metodom v kyltyre rastitelnoi kletki. Him.-farm. jyrn. 1990; 1: 156-158.
20. Prozorovskii V.B., Donkopii V.D., Syslova I.M. Vzaimodeistvie obratimih ingibitorov s kataliticheskimi centrami i allostericheskimi ychastkami holinesteraz. Bulleten eksperimentalnoi biologii i medicini. 1976; 82(8): 553-556.
21. Prozorovskii V.B., Pavlova L.V. Syslova I.M. Farmakologicheskaya harakteristika novogo antiholinesteraznogo sredstva aminostigmina. Eksperimentalnaya i klinicheskaya farmakologiya. 1992; 55(1): 13-16.
22. Tanahashi T., Poulev A., Zenk M.H. Radioimmunoassay for the quantitative determination of galanthamine. Planta Med. 1990; 56(1): 77-81.
doi: 10.1055/s-2006-960889
23. Poulev A., Deus-Neumann B., Zenk M.H. Enzyme immunoassay for the quantitative determination of galanthamine. Planta Med. 1993; 59(5): 442-446.
32. Martinsen A., Naaranlahti T., Turkia L. et al. Comparison of radioimmunoassay and capillary gas chromatography in the analysis of l-hyosciamine from plant material. Phytochemical analysis. 1991; 2: 163-166. doi: 10.1002/PCA.2800020404
34. Kozlov V.K., Bespalov A.Ya., Shelkanova L.B., Gyryanov G.A. Sposob polycheniya konugata gapten-ferment dlya immynofermentnogo analiza: Avt. svidetelstvo SSSR 1351398, prior. 1.09.1984, registr. v Gos. reestre izobretenii 8.07.1987.
35. Weiler E. W., Stockigt J., Zenk M.H. Radioimmunoassay for the quantitative determination of scopolamine. Phytochemistry. 1981; 20(8): 2009-2016.
doi: 10.1016/0031-9422(81)84054-X
36. Hagemann K., Piek K., Stockigt J., Weiler E. W. Monoclonal antibody-based enzyme immunoassay for the quantitative determination of the tropane alkaloid, scopolamine. Planta Med. 1992; 58(1): 68-72. doi: 10.1055/s-2006-961392
37. Kikuchi Y., Irie M., Yoshimatsu K. et al. A monoclonal antibody to scopolamine and its use for competitive enzyme-linked immunosorbent assay. Phytochemistry. 1991; 30(10): 3273-3276. doi: 10.1016/0031-9422(91)83191-m
38. Savary B.J., Dougall D.K. Scopolamine radioimmunoassay for tissue cultures of Datura stramonium. Phytochemistry. 1990; 29(5): 1567-1569.
39. Gable R.S. Comparison of acute lethal toxicity of commonly abused psychoactive substances. Addiction. 2004; 99(6): 686-696. doi: 10.1111/j.1360-0443.2004.00744.x
40. Nutt D.J., King L. A., Phillips L.D. Drug harms in the UK: a multicriteria decision analysis. Lancet. 2010; 376(9752): 1558-1565. doi: https://doi.org/10.1016/S0140-6736(10)61462-6
41. Scholl L., Seth P., Kariisa M. et al. Drug and opioid-involved overdose deaths - United States, 2013-2017. MMWR Morb. Mortal. Wkly Rep. 2019; 67(5152): 1419-1427. doi: 10.15585/mmwr.mm675152e1
42. Van Amsterdam J., Opperhuizen A., Koeter M., Van den Brink W. Ranking the harm of alcohol, tobacco and illicit drugs for the individual and the population. Eur Addict Res. 2010; 16 (4): 202-227. doi: 10.1159/000317249
43. Golovko A.I., Ivnickii U.U., Ivanov M.B., Reinuk V.L., Kozlov V.K. O biologicheskoi aktivnosti dizainerskih narkotikov iz gryppi sinteticheskih opioidov. Yspehi sovremennoi biologii. 2020; 140(5): 464-477. doi: 10.31857/S0042132420040067
44. Martell B. A., Orson F. M., Poling J. T. et al. Cocaine vaccine for the treatment of cocaine dependence: A randomized double-blind placebo controlled efficacy trial. Arch. Gen Psychiatry. 2009; 66(10): 1116-1123. doi: 10.1001/archgenpsychiatry.2009.128
45. Vasiliu O. Current Trends and perspectives in the immune therapy for substance use disorders. Front Psychiatry. 2022; 13: 882491. doi: 10.3389/fpsyt.2022.882491
46. Celik M. , Fuehrlein B. A review of immunotherapeutic approaches for substance use disorders: Current status and future prospects. Immunotargets Ther. 2022; 11: 55-66. doi: 10.2147/ITT.S370435
47. Scendoni R., Bury E., Ribeiro I.L.A. et al. Vaccines as a preventive tool for substance use disorder: A systematic review including a meta-analysis on nicotine vaccines' immunogenicity. Hum. Vaccin. Immunother. 2022; 18(6): 2140552. doi: 10.1080/21645515.2022.2140552
48. Li F., Cheng K., Antoline J.F. et al. Synthesis and immunological effects of heroin vaccines. Org. Biomol. Chem. 2014; 12(37): 7211-7232. doi: 10.1039/c4ob01053a
49. Simon E. J., Dole W. P., Hiller J. M. Coupling of new active morphine derivative to sepharose for affinity chromatography. Proc. Nat. Acad. Sci. (USA). 1972; 69(7); 1835-1837. doi: 10.1073/pnas.69.7.1835
50. Li Q-Q., Sun C-Y., Luo Y-X. et al. A morphine/heroin vaccine with new hapten design attenuates behavioral effects in rats. J. Neurochem. 2011; 119(6): 1271-1281. doi: 10.1111/j.1471-4159.2011.07502.x
51. Abdel-Monem M.M., Portoghese P.S. N-Demethylathion of morphine and structurally related compounds with chloroformate esters. J. Med. Chem. 1972; 15(2): 208-210. doi: 10.1021/jm00272a025
52. Borowitz I.J., Diakiw V. The preparation and synthetic utility of O-substituted normethylmorphine. J. Het. Chem. 1975; 12: 1123-1126
53. Brine G.A., Boldt K.G., Hart C.K., Carroll F.I. The demethylation of morphine and codeine using methyl chloroformate. Org. Prep. Proceed. Int. 1976; 8(3): 103-106.
54. Usagawa T., Itoh Y., Hifumi E. et al. Characterization of morphine-specific monoclonal antibodies showing minimal cross-reactivity with codeine. J. Immunol. Meth. 1993; 157(1-2): 143-148. doi: 10.1016/0022-1759(93)90080-q
55. Torres O.B., Jatah R., Rice K.C. et al. Caracterization and optimization of heroin hapten-BSA conjugates: method development for the synthesis of reproducible hapten-based vaccines. Anal. Bioanal. Chem. 2014; 406(24): 5927-5937. doi: 10.1007/s00216-014-8035-x
56. Torres O. B., Alving C. R., Matyas G. R. Synthesis of hapten-protein conjugate vaccines with reproducible hapten densities. In: Vaccine Design. Methods and Protocols: Vol. 1: Vaccines for Human Diseases, Thomas S., eds. Methods in Molecular Biology, Vol. 1403. New York: Springer Science+Business Media, 2016; 695-712.
57. Stowe G.N., Vendruscolo L.F., Edwards S. et al. A vaccine strategy that induced propective immunity against heroin. J. Med. Chem. 2011; 54(14): 5195-5204. doi: 10.1021/jm200461m
58. Matyas G. R., Rice K. C., Cheng K. et al. Facial recognition of heroin vaccine opiates: Type 1 crossreactivities of antibodies induced by hydrolytically stable haptenic surrogates of heroin, 6-acetylmorphine, and morphine. Vaccine. 2014; 32(13): 1473-1479. doi: 0.1016/j.vaccine.2014.01.028
60. Spector S. Quantitative determination of morphine in serum by radioimmunoassay. J. Pharmacol. Exp. Ther. 1971; 178(2): 253-258.
61. Adler F.L., Liu C.T. Detection of morphine by hemagglutination-inhibition. J. Immunol. 1971; 106(6): 1684-1685.
62. Catlin D., Cleeland R., Grunberg E. A sensitive rapid radioimmunoassay for morphine and immunologically related substances in urine and serum. Clin. Chem. 1973; 19(2): 216-220.
63. Laurie D., Manson A.J., Rowell F.J., Seviour J. A rapid, qualitative ELISA test for the specific detection of morphine in serum or urine. Clin. Chim. Acta. 1989; 183(2): 183-195. doi: 10.1016/0009-8981(89)90334-3
64. Colbert D.L., Gallacher G., Ayling P., Turner G.J. Development of fluoroimmunoassays for the specific detection of morphine in urine. Clin. Chim. Acta. 1988; 171(1): 37-48. doi: 10.1016/0009-8981(88)90289-6
65. Glare P.A., Walsh T.D. Clinical pharmacokinetics of morphine. Ther. Drug Monit. 1991; 13(1): 1-23. doi: 10.1097/00007691-199101000-00001
67. Van Regenmortel M. H. V. From absolute to exquisite specificity. Reflection on the fuzzy nature of speicers, specificity and antigenic sites. J. Immunol. Methods. 1998; 216(1-2): 37-48. doi: 10.1016/s0022-1759(98)00069-6
68. Matyas G.R., Mayorov A.V., Rice K.C. et al. Liposomes containing monophosphoryl lipid A: a potent adjuvant system for inducing antibodies to heroin hapten analogs. Vaccine. 2013; 31(26): 2804-2810. doi: 10.1016/j.vaccine.2013.04.027
69. Brinkley M. A brief survey of methods for preparing protein with dyes, haptens and crosslinking reagents. Bioconjugate chemistry. 1992; 3(1): 2-13. doi: 10.1021/bc00013a001
70. Lemus R., Karol M.H. Conjugation of haptens. Methods Mol. Med. 2008;138: 167-182. doi: 10.1007/978-1-59745-366-0_14
71. Yin X.G., Gao X.F., Du J.J. et al. Preparation of protein conjugates via homobifunctional diselenoester cross-Linker. J. Org Lett. 2016; 18 (22): 5796-5799. doi: 10.1021/acs.orglett.6b02568
72. Fujiwara K., Matsumoto N., Masuyama Y. et al. New hapten-protein conjugation method using N-(m-aminobenzoyloxy) succinimide as a two-level heterobifunctional agent: thyrotropin-releasing hormone as a model peptide without free amino or carboxyl groups. J. Immunol. Methods. 1994; 175(1): 123-129. doi: 10.1016/0022-1759(94)90338-7
73. Jourdan P.S., Mansell R.L., Weiler E.W. Radioimmunoassay for the citrus bitter principle, naringin and related flavonoid-7-O-neohesperidosides. Planta Med. 1982; 44(2): 82-86. doi: 10.1055/s-2007-971407
74. Carroll F. I., Blough B. E., Pidaparthi R. R. et al. Synthesis of mercapto-(+)-methamphethamine haptens and their use for obtaining improved epitope dencity on (+)-methamphethamine conjugate vaccines. J. Med. Chem. 2011; 54 (14): 5221-5228. doi: 10.1021/jm2004943
76. Rohlina M.H. Klinika narkomanii i toksikomanii. V kn.: Rykovodstvo po narkologii / pod red. chlena-korr. RAMN, prof. N. N. Ivanca. M.: Medpraktika-M; 2002: 269-366.
78. Carrera M.R., Ashley J.A., Parsons I.H. et al. Supression of psychoactive effects of cocaine by active immunization. Nature. 1995; 378(6558): 727-730. doi: 10.1038/378727a0
79. Sakurai M., Wirsching P., Janda K. D. Design and synthesis of a cocaine-diamide hapten for vaccine development. Tetrahedron Letters. 1996; 37: 5479-5482.
80. Carrera M.R., Ashley J.A., Zhou B. et al. Cocaine vaccines: Antibodies protection against relapse in a rat model. Proc. Natl. Acad. Sci. USA. 2000; 97(11): 6202-6206. doi: 10.1073/pnas.97.11.6202
81. Biagini R.E., Klincewicz S.L., Henningsen G.M. et al. Antibodies to morphine in workers exposed to opiates at a narcotics manufacturing facility and evidence for similar antibodies in heroin abusers. Life Sciences. 1990; 47(10): 897-908. doi: 10.1016/0024-3205(90)90604-p
82. Hrafnkelsdottir K., Valgeirsson J., Gizurarson S. Induction of Protective and Specific Antibodies against Cocaine by Intranasal Immunisation Using a Glyceride Adjuvant. Biol. Pharm. Bull. 2005; 28(6): 1038-1042. doi: 10.1248/bpb.28.1038
83. Ramakrishnan M., Kinsey B.M., Singh R.A. et al. Hapten optimization for cocaine vaccine with improved cocaine recognition. Chem. Biol. Drug Des. 2014; 84(3):354-363. doi: 10.1111/cbdd.12326
84. Bloom B.T., Bushell M-J. Vaccines against drug abuse-are we there yet? Vaccines (Basel). 2022; 10(6): 860. doi: 10.3390/vaccines10060860
85. Truong T.T., Kosten T.R. Current status of vaccines for substance use disorders: A brief review of human studies. J. Neurol. Sci. 2022; 434: 120098. doi: 10.1016/j.jns.2021.120098
86. Shen X.Y., Orson F.M., Kosten T.R. Vaccines against drug abuse. Clin. Pharmacol. Ther. 2012; 91: 60-70. doi: 10.1038/clpt.2011.281
87. Hieda Y., Keyler D. E., Vandevoort J. T. et al. Active immunization alters the plasma nicotine concentration in rats. J. Pharm. Exper. Ther. 1997; 283(3): 1076-1081.
88. Hieda Y., Keyler D. E., Ennifar S. et al. Vaccination against nicotine during continued nicotine administration in rats: immunogenicity of the vaccine and effects on nicotine distribution to brain. Int. J. Immunopharmacol. 2000; 22(10): 809-819. doi: 10.1016/s0192-0561(00)00042-4
89. Pentel P.R., Malin D.H., Ennifar S. et al. A nicotine conjugate vaccine reduces nicotine distribution to brain and attenuates its behavioral and cardiovascular effects in rats. Pharmacol. Biochem. Behav. 2000; 65(1):191-198. doi: 10.1016/s0091-3057(99)00206-3
90. Anton B., Leff P. A novel bivalent morphine/heroin vaccine that prevents relapse to heroin addiction in rodents. Vaccine. 2006; 24(16): 3232-3240. doi: 10.1016/j.vaccine.2006.01.047
91. Cerny E.H., Cerny T. Vaccines against nicotine. Human Vaccines. 2009;
5(4): 200-205. doi: 10.4161/hv.5.4.7310
92. McCluskie M.J., Pryde D.C., Gervais D.P. et al. Enhancing immunogenicity of a 3′aminomethylnicotine-DT-conjugate anti-nicotine vaccine with CpG adjuvant in mice and non-human primates. Inter. Immunopharm. 2013; 16(1): 50-56. doi: 10.1016/j.intimp.2013.03.021
93. United Nations Office on Drugs and Crime. World Drug Report 2018 (Set of 5 Booklets); United Nations: San Francisco, CA, USA, 2018. 111.
94. Hossain M.K., Davidson M., Kypreos E., Feehan J., Muir J.A., Nurgali K., Apostolopoulos V. Immunotherapies for the treatment of drug addiction. Vaccines. 2022; 10(11):1778. https://doi.org/10.3390/vaccines10111778 112.