Медико-биологический
информационный портал
для специалистов
 
Medline.ru

СОДЕРЖАНИЕ ЖУРНАЛА:
Физико-химическая биология

Клиническая медицина

Профилактическая медицина

Медико-биологические науки


АРХИВ:

Фундаментальные исследования

Организация здравохраниения

История медицины и биологии



Последние публикации

Поиск публикаций

Articles

Архив :  2000 г.  2001 г.  2002 г. 
               2003 г.  2004 г.  2005 г. 
               2006 г.  2007 г.  2008 г. 
               2009 г.  2010 г.  2011 г. 
               2012 г.  2013 г.  2014 г. 
               2015 г.  2016 г.  2017 г. 
               2018 г.  2019 г.  2020 г.  2021 г.  2022 г.  2023 г. 

Редакционная информация:
        Опубликовать статью
        Наша статистика


 РЕДАКЦИЯ:
Главный редактор

Заместители главного редактора

Члены редколлегии
Специализированные редколлегии


 УЧРЕДИТЕЛИ:
Институт теоретической и экспериментальной биофизики Российской академии наук.

ООО "ИЦ КОМКОН".




Адрес редакции и реквизиты

199406, Санкт-Петербург, ул.Гаванская, д. 49, корп.2

ISSN 1999-6314

Российская поисковая система
Искать: 


«
Vol. 22, Art. 9 (pp. 119-131)    |    2021       
»

Experimental evaluation of the effect of radial shock wave therapy on the formation of piezoelectric effects in bone tissue.
Vasilevich S.V., Kurchenko S.N.

Childrens rehabilitation center of orthopaedics and traumatology Ogonyok



Brief summary

Backgraund: The mechanisms of action of shock waves are associated with various biological reactions, including "mechanotransduction". Bone tissue under the influence of mechanical load is able to generate piezoelectric charges, which can be control signals for remodeling the bone structure. In the modern literature, we have not found works on the relationship of shock waves on the occurrence of piezoelectric discharges in the bone, which was the basis for the study. Aims: to qualitatively evaluate the effect of shockwave therapy (SWT) on the formation of piezoelectric potentials in bone tissue. Materials and methods: The material for the study was selected native femur and tibia of pigs. Macropreparations were released from soft tissues, and the same type of bone fragments were formed 8-10 cm long, consisting of a section of the diaphysis, metaepiphysis and epiphysis, as well as two bones united by an articular capsule (femur and tibia). The opposite ends of the test bone macropreparations were connected to the input of the analog-to-digital converter of the electrocardiograph. The electrical signal from the bone was recorded in the temporary ECG recording mode. Signal registration was performed on several areas of bone tissue at different distances from the point of application of the shock wave. The Storz Medical device (MASTERPULS 200) was used as a source of shock-wave impact. Pulse characteristics: radial, applicator with a diameter of 15 mm, 1 Hertz, up to 5 bar. The impact was applied to the bone in the zone of the diaphysis, metaphysis and epiphysis. We also evaluated changes in the amplitude of electric piezo charges when placing muscles and tendon tissue between the bone preparation and the SWT applicator. Results: The impact of a radial shock wave on the bone preparation caused piezoelectric impulses in it. The value of piezoelectric discharges depended on the acoustic (mineral) density of the bone and the energy of the impact on the bone. The maximum piezoelectric charge occurs in the bone diaphysis at the point closest to the emitter (up to 45 mV). Piezoelectric signals of different intensity were recorded in the whole bone preparation at a distance from the zone of application of the shock wave up to 5 cm. Charges were not registered in the adjacent bone (connected through a common joint capsule). The piezoelectric discharge quickly faded when the muscles or tendon tissue were placed between the shock wave emitter and the bone, as well as when the SWT emitter was not perpendicular to the bone surface. The piezoelectric signal was not registered when the shock wave was applied to the tendon area. Conclusions: Shock-wave action on the bone causes piezoelectric effects in it. Shock wave is a physiotherapy factor whose behavior in the human body can be simplified by the laws of acoustic wave propagation in environments. The "shock wave-bone-piezoelectric charge" model can be used for modeling and preliminary assessment of the impact of SWT.


Key words

shock wave therapy, piezoelectric effect, bone tissue, bone regeneration.





(The article in PDF format. For preview need Adobe Acrobat Reader)



Open article in new window

Reference list

1. Shock wave as biological therapeutic tool: From mechanical stimulation to recovery and healing, through mechanotransduction / d'Agostino MC, Craig K, Tibalt E, Respizzi S.// Int J Surg. - 2015. - Vol. 24, Pt B. - R.147-53. doi: 10.1016/j.ijsu.2015.11.030


2. The bone defect healing under the influence of radial extracorporeal shock-wave therapy in experiment/ Gertsen GI, Se-Fey, Ostapchuk RM, Lesovoy AV, Zherebchuk VV. //Klin Khir. - 2016. - Vol. 3. - P. 54-7. Russian.


3. Biological effects of extracorporeal shockwave in bone healing: a study in rabbits/ Wang CJ, Wang FS, Yang KD. // Arch Orthop Trauma Surg. - 2008. - Vol. 128, 8. - P.879-84. doi: 10.1007/s00402-008-0663-1


4. Impact of radial shock-wave therapy of a low frequency on metabolic processes in the bone tissue in traumatic tibial defects in experiment / Magomedov AM, Gertsen GI, Fey S, Kuzub TA, Krinitskaya OF.// Klin Khir. - 2016. - Vol. 4. - P. 64-6. Russian.


5. High energy focused shock wave therapy accelerates bone healing. A blinded, prospective, randomized canine clinical trial /Kieves NR, MacKay CS, Adducci K, Rao S, Goh C, Palmer RH, Duerr FM.// Vet Comp Orthop Traumatol. - 2015. - Vol.28, 6 - P. 425-32. doi: 10.3415/VCOT-15-05-0084


6. Historical ESWT Paradigms Are Overcome: A Narrative Review / Heinz Lohrer, Tanja Nauck, Vasileios Korakakis and Nikos Malliaropoulos/ BioMed Research International - 2016. - Article ID 3850461 - 7 pages. doi.org/10.1155/2016/3850461


7. Fukada E., On the Piezoelectric Effect of Bone/ Fukada E., Yasuda I. // J. Phys. Soc. Japan - 1957. - vol. 12. - P. 1l58-1162.


8. Yasuda I. Dynamic callus and electric callus / Yasuda I., Noguchi K., Sata T. // J. Bone Joint Surg. - 1955. - vol. 37A - P.1292-1293.


9. Andrew C., Bassett L., Robert O. Becker. Generation of Electric Potentials by Bone in Response to Mechanical Stress.// Science. - 1962. - Vol. 137. - Issue 3535 - P. 1063-1064. doi: 10.1126/science.137.3535.1063


10. Shamos MH., and Lavine LS. Physical bases for bioelectric effects in mineralized tissues.// Clin Orthop Relat Res. -1964. - Vol.35. - P.177-88.


11. Vozmojnie mehanizmi vliyaniya elektretnih effektov kostei na osteogenez y detei i podrostkov / Vasilevich S.V., Arsenev A.V., Dydin M.G., Homytov V.P., Komlev A.E. V sbornike: VIII Mejdynarodnii kongress "Slabie i sverhslabie polya i izlycheniya v biologii i medicine" Naychnie trydi Kongressa - 2018. - S. 165-166.


12. The influence of low-frequency acoustic vibrations on the osteoreparation of the long bones of extremities at combined radiative-mechanical lesions / Shapovalov V.M., Nadulich, K.A., Vasilevich, S.V., Garipov R.R. // Traumatology and Orthopedics of Russia. - 2008. - Vol. 3,49. - P. 4-10. Russian.


13. Analysis of stress distribution and piezoelectric response in cantilever bending of bone and tendon / Williams WS, Breger L.// Ann N Y Acad Sci. - 1974. - Vol 238. - P. 121-30. doi.org/10.1111/j.1749-6632.1974.tb26782.x





Свидетельство о регистрации сетевого электронного научного издания N 077 от 29.11.2006
Журнал основан 16 ноября 2000г.
Выдано Министерством РФ по делам печати, телерадиовещания и средств массовых коммуникаций
(c) Перепечатка материалов сайта Medline.Ru возможна только с письменного разрешения редакции

Размещение рекламы

Rambler's Top100