Neuromuscular transmission disorders following intoxications with sodium channel blockers: experimental study
State Scientific-research Test Institute of the Military Medicine, Russian Federation Defense Ministry, Saint-Petersburg, Russia.
Brief summary
The growing relevance of research of neurotoxins having biological origin is stipulated by expansions of freshwater reservoirs by cyanobacteria, accompanied by an increase in the incidence of alimentary poisoning of animals and people. Among the cyanobacteria neurotoxins in terms of toxicity, the most dangerous are substances from the group of sodium channel blockers (saxitoxins, tetrodotoxin). In order to improve the quality of diagnosis of poisoning by sodium channel blockers an experimental study of neural conduction and neuromuscular transmission disorders was performed using electromyography in an experimental model of an acute severe poisoning of rats with tetrodotoxin. It was found that the most characteristic electromyographic signs of severe tetrodotoxin poisoning are a progressive decrease in the amplitude and area of compound muscle potentials, as well as a rapid increase in their duration and latency in combination with a moderately pronounced decrement during rhythmic stimulation.
1. Chernova E. et al. Dolichospermum and Aphanizomenon as neurotoxins producers in some Russian freshwaters / Toxicon. 2017. V. 130. Article: 47e55.
2. Miller T.R. et al. Cyanobacterial toxins of the laurentian great lakes, their toxicological effects, and numerical limits in drinking water / Mar. Drugs. 2017. V. 15. N 6. P. E160-211.
3. Llewellyn L.E. Sodium channel inhibiting marine toxins / Progress in Molecular and Subcellular Biology. 2009. V. 46. P. 67-97.
4. Pratheepa V., Vasconcelosa V. Microbial diversity associated with tetrodotoxin production in marine organisms / Environ. Toxicol. Pharmacol. 2013. V. 36. P. 1046-1054.
5. Gelashvili D.B., Krilov V.N., Romanova E.B. Zootoksinologiya: bioekologicheskie i biomedicinskie aspekti. Nijnii Novgorod: Izd-vo NNGY, 2015. 770 s.
6. Chau R., Kalaitzis J.A., Neilan B.A. On the origins and biosynthesis of tetrodotoxin / Aquatic Toxicology. 2011. Vol. 104. P. 61-72.
7. Vlasenko A.E. i dr. Issledovanie belkov, svyazivaushih toksini gyanidinovogo ryada v morskom cherve Cephalothrix simula: poisk potencialnih antidotov morskih toksinov / Izvestiya Samarskogo naychnogo centra Rossiiskoi akademii nayk. 2016. T. 18. N 2-3. S. 647-652.
8. Encyclopedia of toxicology. 2nd edition. Ed. P. Wexler. Academic Press, 2005. P. 161-162.
9. Kyznecov V.G. Antitela protiv nizkomolekylyarnih gyanidinovih neirotoksinov kak sredstvo detoksikacii i analiticheskoi diagnostiki / Izvestiya Samarskogo naychnogo centra Rossiiskoi akademii nayk. 2017. T. 19. N 5-2. S. 313-317.
10. Ribalchenko I.V. i dr. Primenenie visokoeffektivnoi jidkostnoi hromatografii v sochetanii s mass-spektrometriei visokogo razresheniya dlya opredeleniya podlinnosti i kolichestvennogo soderjaniya tetrodotoksina v lekarstvennih preparatah / Jyrnal analiticheskoi himii. 2017. T. 72. N 6. S. 545-551.
11. Knutsen H.K. et al. Risk for public health to the presence of tetrodotoxin (TTX) and TTX analogues in marine bivavles and gastropods. EFSA Journal. 2017. V. 15. N 5. Article 4752.
12. Liu D., Zhang J., Han B., Pen L. An electrophysiological study of acute tetrodotoxin poisoning / Cell Biochem. Biophys. 2011. Vol. 59. N 1. P.13-18.
14. Ilinskii N.S., Tunin M.A., Matrosova M.O. Eksperimentalnoe obosnovanie primeneniya visokochastotnoi ritmicheskoi stimylyacii dlya diagnostiki naryshenii nervno-mishechnoi peredachi pri deficite acetilholinesterazi. Materiali konferencii «Bolezni perifericheskih nervov i mishc: neobhodimii i dostatochnii obem issledovaniya», Moskva. 2019. S. 17.
15. Fong V.H., Chow S.Y. Electrophysiological studies on acute tetrodotoxin poisoning: a case report / Chinese medical journal. 1996. V. 58. N 4. P. 299-302.
16. Trevett A.J., Mavo B., Warrell D.A. Tetrodotoxic poisoning from ingestion of a porcupine fish (Diodon hystrix) in Papua New Guinea: nerve conduction studies / The American journal of tropical medicine and hygiene. 1997. V. 56. N 1. P. 30-32.
17. Moczydlowski E.G. The molecular mystique of tetrodotoxin / Toxicon. 2012. V. 4461. P. 1-19.
Reference
1. Chernova E. et al. Dolichospermum and Aphanizomenon as neurotoxins producers in some Russian freshwaters / Toxicon. 2017. V. 130. Article: 47e55.
2. Miller T.R. et al. Cyanobacterial toxins of the laurentian great lakes, their toxicological effects, and numerical limits in drinking water / Mar. Drugs. 2017. V. 15. N 6. P. E160-211.
3. Llewellyn L.E. Sodium channel inhibiting marine toxins / Progress in Molecular and Subcellular Biology. 2009. V. 46. P. 67-97.
4. Pratheepa V., Vasconcelosa V. Microbial diversity associated with tetrodotoxin production in marine organisms / Environ. Toxicol. Pharmacol. 2013. V. 36. P. 1046-1054.
6. Chau R., Kalaitzis J.A., Neilan B.A. On the origins and biosynthesis of tetrodotoxin / Aquatic Toxicology. 2011. Vol. 104. P. 61-72.
7. Vlasenko A.E. et al. Research the guanidine-binding proteins in a marine worm Cephalothrix simula: search of promising antidotes for marine toxins / Izvestia Samarskogo nauchnogo centra Rossiyskoy akademii nauk. 2016. V. 18. N 2-3. P. 647-652. [In Russian].
8. Encyclopedia of toxicology. 2nd edition. Ed. P. Wexler. Academic Press, 2005. P. 161-162.
9. Kuznetcov V.G. Antibodies against low-weight guanidine neurotoxins as an instrument of detoxication and analytical diagnostic. Izvestia Samarskogo nauchnogo centra Rossiyskoy akademii nauk. 2017. V. 19. N 5-2. P. 313-317. [In Russian].
10. Rybal?chenko I.V. et al. The use of high performance liquid chromatography in combination with high resolution mass spectrometry to determine the consistency and quantitative content of tetrodotoxin in drugs / Journal of analytical chemistry. 2017. V. 72. N 6. P. 545-551. [In Russian].
11. Knutsen H.K. et al. Risk for public health to the presence of tetrodotoxin (TTX) and TTX analogues in marine bivavles and gastropods. EFSA Journal. 2017. V. 15. N 5. Article 4752.
12. Liu D., Zhang J., Han B., Pen L. An electrophysiological study of acute tetrodotoxin poisoning / Cell Biochem. Biophys. 2011. Vol. 59. N 1. P.13-18.
14. Ilinskiy N.S., Tyunin M.A., Matrosova M.O. Experimental substantiation of the use of high-frequency rhythmic stimulation for the diagnosis of neuromuscular transmission disorder with acethylcholinesterase deficiency. Materials of conference «Disorders of peripheral nerves and muscle: necessary and sufficient amount of research», Moscow. 2019. P. 17 [In Russian].
15. Fong V.H., Chow S.Y. Electrophysiological studies on acute tetrodotoxin poisoning: a case report / Chinese medical journal. 1996. V. 58. N 4. P. 299-302.
16. Trevett A.J., Mavo B., Warrell D.A. Tetrodotoxic poisoning from ingestion of a porcupine fish (Diodon hystrix) in Papua New Guinea: nerve conduction studies / The American journal of tropical medicine and hygiene. 1997. V. 56. N 1. P. 30-32.
17. Moczydlowski E.G. The molecular mystique of tetrodotoxin / Toxicon. 2012. V. 4461. P. 1-19.