МЕДЛАЙН.РУ
Содержание журнала

Архив

Редакция
Учредители

Федеральное государственное бюджетное учреждение науки
Институт теоретической и экспериментальной биофизики
Российской академии наук


ООО "ИЦ КОМКОН"

Адрес редакции и реквизиты

192012, Санкт-Петербург, ул.Бабушкина, д.82 к.2, литера А, кв.378

ISSN 1999-6314


Том: 4
Статья: 119
Страницы: 188-284
Опубликована в журнале: Март 2003 г.


Основы токсикологии
С. А. Куценко
Санкт-Петербург, 2002 г.


РАЗДЕЛ 8. ЭКОТОКСИКОЛОГИЯ



ГЛАВА 8.1.

Основы экотоксикологии



Развитие промышленности неразрывно связано с расширением круга используемых химических веществ. Увеличение объемов применяемых пестицидов, удобрений и других химикатов - характерная черта современного сельского хозяйства и лесоводства. В этом объективная причина неуклонного усиления химической опасности для окружающей среды, таящейся в самой природе человеческой деятельности.

Еще несколько десятков лет назад химические отходы производства просто сбрасывали в окружающую среду, а пестициды и удобрения практически бесконтрольно, исходя из утилитарных соображений, распыляли над огромными территориями. При этом, полагали, что газообразные вещества должны быстро рассеиваться в атмосфере, жидкости частично растворяться в воде и уноситься из мест выброса. И хотя твердые продукты в значительной степени накапливались в регионах, потенциальная опасность промышленных выбросов рассматривалась как низкая. Использование же пестицидов и удобрений давало экономический эффект, во много раз превосходящий ущерб, наносимый токсикантами природе.

Однако уже в 1962 году появляется книга Рашель Карсон УМолчаливая веснаФ, в которой автор описывает случаи массовой гибели птиц и рыб от бесконтрольного использования пестицидов. Карсон сделала вывод, что выявляемые эффекты поллютантов на дикую природу предвещают надвигающуюся беду и для человека. Эта книга привлекла всеобщее внимание. Появились общества защиты окружающей среды, правительственные законодательные акты, регламентирующие выбросы ксенобиотиков. С этой книги, по сути, началось развитие новой ветви науки - зкотоксикологии.

В самостоятельную науку экотоксикологию (ecotoxicology) выделил Рене Траут, который впервые, в 1969 году, связал воедино два совершенно разных предмета: экологию (по Кребсу - науку о взаимоотношениях, которые определяют распространение и обитание живых существ) и токсикологию. На самом деле, эта область знаний включает в себя, помимо указанных, элементы и других естественных наук, таких как химия, биохимия, физиология, популяционная генетика и др.

По мере развития, само понятие УэкотоксикологияФ претерпело определенную эволюцию. В 1978 году Батлер рассматривал экотоксикологию как науку, изучающую токсические эффекты химических агентов на живые организмы, особенно на уровне популяций и сообществ, в пределах определенных экосистем. Левин и др. в 1989 г. определили ее как науку, прогнозирующую влияние химических веществ на экосистемы. В 1994 году В. и Т. Форбсы дали следующее определение экотоксикологии: Уобласть знаний, которая суммирует экологические и токсикологические эффекты химических поллютантов на популяции, сообщества и экосистемы, прослеживая судьбу (транспорт, трансформацию и удаление) таких поллютантов в окружающей средеФ.

Таким образом, экотоксикология, по мнению авторов, изучает развитие неблагоприятных эффектов, проявляющихся при действии загрязнителей на самые разнообразные виды живых организмов (от микроорганизмов, до человека), как правило, на уровне популяций или экосистемы в целом, а также судьбу химического вещества в системе биогеоценоза.

Позже в рамках экотоксикологии стали выделять, в качестве самостоятельного направления, один из её разделов, получивший название Утоксикология окружающей средиФ (environmental toxicology).

Сформировалась тенденция использовать термин УэкотоксикологияФ только для обозначения суммы знаний, касающихся эффектов химикатов на экосистемы, исключая человека. Так, по Уолкеру и др. (1996) экотоксикология - учение о вредных эффектах химикатов на экосистемы. Устраняя из круга рассматриваемых экотоксикологией объектов человека, это определение детерминирует различие между экотоксикологией и токсикологией окружающей среды, определяет предмет изучения последней. Термин Утоксикология окружающей средыФ предлагается использовать только для исследований прямого действия УзагрязнителейФ окружающей среды на человека.

В процессе изучения эффектов химических веществ, присутствующих в окружающей среде, на человека и человеческие сообщества, токсикология окружающей среды оперирует уже устоявшимися категориями и понятиями классической токсикологии и применяет, как правило, ее традиционную экспериментальную, клиническую, эпидемиологическую методологию. Объектом исследований при этом являются механизмы, динамика развития, проявления неблагоприятных эффектов действия токсикантов и продуктов их превращения в окружающей среде на человека.

Разделяя в целом такой подход, и положительно оценивая его практическую значимость, следует однако заметить, что методологические различия между экотоксикологией и токсикологией окружающей среды полностью стираются, когда перед исследователем ставятся задачи оценить опосредованное действия загрязнителей на человеческие популяции (например, обусловленное токсической модификацией биоты), или, напротив, выяснить механизмы действия химикатов, находящихся в среде, на представителей того или иного отдельного вида живых существ. В этой связи, с теоретических позиций, Утоксикология окружающей средыФ, как наука, является лишь частной проблемой УэкотоксикологииФ, при этом методология, понятийный аппарат и структура наук - едины.

Содержанием дисциплины УэкотоксикологииФ является учение об экотоксичности, а основными рассматриваемыми вопросами: характеристика ксенобиотического профиля среды обитания, проблемы экотоксикокинетики, экотоксикодинамики, экотоксикометрии.



1. Ксенобиотический профиль среды



С позиций токсиколога абиотические и биотические элементы того, что мы называем окружающей средой - все это сложные, порой особым образом организованные агломераты, смеси бесчисленного количества молекул.

Для экотоксикологии интерес представляют лишь молекулы, обладающие биодоступностью, т.е. способные взаимодействовать немеханическим путем с живыми организмами. Как правило, это соединения, находящиеся в газообразном или жидком состоянии, в форме водных растворов, адсорбированные на частицах почвы и различных поверхностях, твердые вещества, но в виде мелко дисперсной пыли (размер частиц менее 50 мкм), наконец вещества, поступающие в организм с пищей.

Часть биодоступных соединений утилизируется организмами, участвуя в процессах их пластического и энергетического обмена с окружающей средой, т.е. выступают в качестве ресурсов среды обитания. Другие же, поступая в организм животных и растений, не используются как источники энергии или Упластический материалФ, но, действуя в достаточных дозах и концентрациях, способны существенно модифицировать течение нормальных физиологических процессов. Такие соединения называются чужеродными или ксенобиотиками (чуждые жизни).

Совокупность чужеродных веществ, содержащихся в окружающей среде (воде, почве, воздухе и живых организмах) в форме (агрегатном состоянии), позволяющей им вступать в химические и физико-химические взаимодействия с биологическими объектами экосистемы составляют ксенобиотический профиль биогеоценоза. Ксенобиотический профиль следует рассматривать как один из важнейших факторов внешней среды (наряду с температурой, освещенностью, влажностью, трофическими условиями и т.д.), который может быть описан качественными и количественными характеристиками.

Важным элементом ксенобиотического профиля являются чужеродные вещества, содержащиеся в органах и тканях живых существ, поскольку все они рано или поздно потребляются другими организмами (т.е. обладают биодоступностью). Напротив, химические вещества, фиксированные в твердых, не диспергируемых в воздухе и нерастворимых в воде объектах (скальные породы, твердые промышленные изделия, стекло, пластмасса и др.), не обладают биодоступностью. Их можно рассматривать как источники формирования ксенобиотического профиля.

Ксенобиотические профили среды, сформировавшиеся в ходе эволюционных процессов, миллионы лет протекавших на планете, можно назвать естественными ксенобиотическими профилями. Они различны в разных регионах Земли. Биоценозы, существующие в этих регионах (биотопах), в той или иной степени адаптированы к соответствующим естественным ксенобиотическим профилям.

Различные природные коллизии, а в последние годы и хозяйственная деятельность человека, порой существенным образом изменяют естественный ксенобиотический профиль многих регионов (особенно урбанизированных). Химические вещества, накапливающиеся в среде в несвойственных ей количествах и являющиеся причиной изменения естественного ксенобиотического профиля, выступают в качестве экополлютантов (загрязнителей). Изменение ксенобиотического профиля может явиться следствием избыточного накопления в среде одного или многих экополлютантов (таблица 1).



Таблица 1. Перечень основных экополлютантов





Загрязнители воздуха


Загрязнители воды и почвы


Газы:
Оксиды серы
Оксиды азота
Оксиды углерода
Озон
Хлор
Углеводороды
Фреоны

Пылевые частицы:
Асбест
Угольная пыль
Кремний
Металлы


Металлы (свинец, мышьяк, кадмий, ртуть)
Пестициды хлоорганические (ДДТ, алдрин, диэлдрин, хлордан)
Нитраты
Фосфаты
Нефть и нефтепродукты
Органические растворители (толуол, бензол, тетрахлорэтилен)
Низкомолекулярные галогенированные углеводороды (хлороформ, бромдихлорметан, бромоформ, тетрахлорметан, дихлорэтан)
Полициклические ароматические углеводороды (ПАУ)
Полихлорированные бифенилы
Диоксины
Дибензофураны
Кислоты


Далеко не всегда это приводит к пагубным последствиям для живой природы и населения. Лишь экополлютант, накопившийся в среде в количестве, достаточном для инициации токсического процесса в биоценозе (на любом уровне организации живой материи), может быть обозначен как экотоксикант.

Одна из сложнейших практических задач экотоксикологии - определение количественных параметров, при которых экополлютант трансформируется в экотоксикант. При её решении необходимо учитывать, что в реальных условиях на биоценоз действует весь ксенобиотический профиль среды, модифицируя при этом биологическую активность отдельного поллютанта. Поэтому в разных регионах (разные ксенобиотические профили, различные биоценозы) количественные параметры трансформации поллютанта в экотоксикант строго говоря различны.



2. Экотоксикокинетика



Экотоксикокинетика - раздел экотоксикологии, рассматривающий судьбу ксенобиотиков (экополлютантов) в окружающей среде: источники их появления; распределение в абиотических и биотических элементах окружающей среды; превращение ксенобиотика в среде обитания; элиминацию из окружающей среды.



2.1. Формирование ксенобиотического профиля. Источники поступления поллютантов в среду



К числу природных источников биодоступных ксенобиотиков, по данным ВОЗ (1992), относятся: переносимые ветром частицы пыли, аэрозоль морской соли, вулканическая деятельность, лесные пожары, биогенные частицы, биогенные летучие вещества. Другим источником ксенобиотиков в среде, значение которого неуклонно возрастает, является деятельность человека

Важнейшим элементом экотоксикологической характеристики поллютантов является идентификация их источников. Решить эту задачу далеко не просто, т.к. порой вещество поступает в среду в ничтожных количествах, иногда в виде примесей к вполне УбезобиднымФ субстанциям. Наконец возможно образование экополлютанта в окружающей среде в результате абиотических или биотических трансформаций других веществ.



2.2. Персистирование



Многочисленные абиотические (происходящие без участия живых организмов) и биотические (происходящие с участием живых организмов) процессы в окружающей среде, направлены на элиминацию (удаление) экополлютантов. Многие ксенобиотики, попав в воздух, почву, воду приносят минимальный вред экосистемам, поскольку время их воздействия ничтожно мало. Вещества, оказывающиеся резистентными к процессам разрушения, и, вследствие этого, длительно персистирующие в окружающей среде, как правило, являются потенциально опасными экотоксикантами (таблица 2).



Таблица 2. Период полуразрушения некоторых ксенобиотиков в окружающей среде





Поллютант


Период полуразрушения


Среда


ДДТ

ТХДД

Атразин

Бензоперилен

Фенантрен

Карбофуран

Фосфорилтиохолины

Иприт

Зарин


10 лет

9 лет

25 месяцев

14 месяцев

138 дней

45 дней

21 день

7 дней

4 часа


почва

почва

вода (рН 7,0)

почва

почва

вода (рН 7,0)

почва (t +15о)

почва (t +15о)

почва (t +15о)


Постоянный выброс в окружающую среду персистирующих поллютантов приводит к их накоплению, превращению в экотоксиканты для наиболее уязвимого (чувствительного) звена биосистемы. После прекращения выброса персистирующего токсиканта он еще длительное время сохраняется в среде. Так, в воде озера Онтарио в 90-е годы определяли высокие концентрации пестицида мирекс, использование которого было прекращено еще в конце 70-х годов. В водоемах испытательного полигона ВВС США во Флориде, где в 1962 - 1964 годах был с исследовательскими целями распылен Оранжевый Агент, спустя 10 лет ил содержал 10 - 35 нг/кг ТХДД (при норме, по стандартам США - 0,1 пкг/кг, России - 10 пкг/кг).

К числу веществ, длительно персистирующих в окружающей среде, относятся тяжелые металлы (свинец, медь, цинк, никель, кадмий, кобальт, сурьма, ртуть, мышьяк, хром), полициклические полигалогенированные углеводороды (полихлорированные дибензодиоксины и дибензофураны, полихлорированные бифенилы и т.д.), некоторые хлорорганические пестициды (ДДТ, гексахлоран, алдрин, линдан и т.д.) и многие другие вещества.



2.3. Трансформация



Подавляющее большинство веществ подвергаются в окружающей среде различным превращениям. Характер и скорость этих превращений определяют их стойкость.



2.3.1. Абиотическая трансформация



На стойкость вещества в окружающей среде влияет большое количество процессов. Основными являются фотолиз (разрушение под влиянием света), гидролиз, окисление.

Фотолиз. Свет, особенно ультрафиолетовые лучи, способен разрушать химические связи и, тем самым, вызывать деградацию химических веществ. Фотолиз проходит главным образом в атмосфере и на поверхности почвы и воды. Скорость фотолиза зависит от интенсивности света и способности вещества его поглощать. Ненасыщенные ароматические соединения, например полициклические ароматические углеводороды (ПАУ), наиболее чувствительны к фотолизу, т.к. активно поглощают энергию света. Свет ускоряет и другие процессы деградации веществ: гидролиз и окисление. В свою очередь наличие в средах фотооксидантов, таких как озон, окислы азота, формальдегид, акролеин, органические перекиси, существенно ускоряет процесс фотолиза других поллютантов (показано для ПАУ).

Гидролиз. Вода, особенно при нагревании, быстро разрушает многие вещества. Эфирные связи, например, в молекулах фосфорорганических соединений, высокочувствительны к действию воды, чем определяется умеренная стойкость этих соединений в окружающей среде. Скорость гидролиза сильно зависит от рН.

Процесс деградации инсектицида паратиона представлен на рисунке 1.







Рисунок 1. Абиотическое превращение паратиона в окружающей среде



В результате превращения химических веществ в окружающей среде образуются новые вещества. При этом их токсичность иногда может быть выше, чем у исходного агента. Так, на рисунке 1 показано, что в результате фотоокисления паратиона в среде может образовываться параоксон. Токсичность последнего для млекопитающих в несколько десятков раз выше, чем у исходного вещества.

Фотохимические превращения в окружающей среде 2,4,5-трихлорфеноксиуксусной кислоты, известного гербицида, может приводить к образованию опасного экополлютанта 2,3,7,8-тетрахлодибензо-р-диоксина (рисунок 2).







Рисунок 2. Схема фотолитического превращения феноксиуксусной кислоты (1) в ТХДД (2) в окружающей среде (По Akermark B., 1978)



Еще один хорошо известный пример: образование нитрозосоединений. Так, по данным ученых США, в почве, в кислой среде, легко вступают в соединение с нитритами целый ряд пестицидов. Среди них диалкилтиокарбаматы, тиокарбамоилдисульфиды, соли феноксиуксусной кислоты и др. Образующиеся нитрозосоединения, рассматриваются в настоящее время, как возможные канцерогены.



2.3.2. Биотическая трансформация



Абиотическое разрушение химических веществ обычно проходит с малой скоростью. Значительно быстрее деградируют ксенобиотики при участии биоты, особенно микроорганизмов (главным образом бактерий и грибов), которые используют их как питательные вещества. Процесс биотического разрушения идет при участии энзимов. В основе биопревращений веществ лежат процессы окисления, гидролиза, дегалогенирования, расщепления циклических структур молекулы, отщепление алкильных радикалов (деалкилирование) и т.д. Деградация соединения может завершаться его полным разрушением, т.е. минерализацией (образование воды, двуокиси углерода, других простых соединений). Однако возможно образование промежуточных продуктов биотрансформации веществ, обладающих порой более высокой токсичностью, чем исходный агент. Так, превращение неорганических соединений ртути фитопланктоном может приводить к образованию более токсичных ртутьорганических соединений, в частности, метилртути. Подобное явление имело место в Японии на берегах бухты Минамато в 50 - 60х годах. Поступавшая в воду залива ртуть со стоками фабрики по производству азотных соединений, трансформировалась биотой в метилртуть. Последняя концентрировалась в тканях морских организмов и рыбы, служившей пищей местного населения. В итоге у людей, потреблявших рыбу, развивалось заболевание, характеризовавшееся сложным неврологическим симптомокомплексом, у новорожденных детей отмечались пороки развития. Всего было зарегистрировано 292 случая болезни Минамато, 62 из них закончились гибелью людей.



2.4. Процессы элиминации, не связанные с разрушением



Некоторые процессы, происходящие в окружающей среде, способствуют элиминации ксенобиотиков из региона, изменяя их распределение в компонентах среды. Загрязнитель с высоким значением давления пара может легко испаряться из воды и почвы, а затем перемещаться в другие регионы с током воздуха. Это явление лежит в основе повсеместного распространения относительно летучих хлорорганических инсектицидов, таких как линдан и гексахлорбензол.

Перемещение ветром и атмосферными течениями частиц токсикантов или почвы, на которых адсорбированы вещества, также важный путь перераспределения поллютантов в окружающей среде. В этом плане характерен пример полициклических ароматических углеводородов (бензпирены, дибензпирены, бензантрацены, дибензантрацены и др.). Бензпирен и родственные ему соединения как естественного (главным образом вулканического), так и антропогенного происхождения (выброс металлургического, нефтеперерабатывающего производств, предприятий теплоэнергетики и т.д.) активно включаются в биосферный круговорот веществ, переходя из одной среды в другую. При этом, как правило, они связаны с твердыми частицами атмосферной пыли. Мелкодисперсная пыль (1-10 мкм) длительно сохраняется в воздухе, более крупные пылевые частицы достаточно быстро выседают на почву и в воду в месте образования. При извержении вулканов пепел содержит большое количество таких веществ. При этом, чем выше выброс, тем на большее расстояние рассеиваются поллютанты.

Сорбция веществ на взвешенных частицах в воде, с последующим осаждением приводит к их элиминации из толщи воды, но накоплению в донных отложениях. Осаждение резко снижает биодоступность загрязнителя.

Перераспределению водо-растворимых веществ способствуют дожди и движение грунтовых вод. Например, гербицид атразин, используемый для защиты широколиственных растений в сельском и парковом хозяйстве США, повсеместно присутствует там в поверхностных водах. По некоторым данным до 92% исследованных водоемов США содержат этот пестицид. Поскольку вещество достаточно стойкое и легко растворимо в воде оно мигрирует и в грунтовые воды и там накапливается.



2.5. Биоаккумуляция



Если загрязнитель окружающей среды не может попасть внутрь организма, он, как правило, не представляет для него существенной опасности. Однако, попав во внутренние среды, многие ксенобиотики способны накапливаться в тканях (см. раздел УТоксикокинетикаФ). Процесс, посредством которого организмы накапливают токсиканты, извлекая их из абиотической фазы (воды, почвы, воздуха) и из пищи (трофическая передача), называется биоаккумуляцией. Результатом биоаккумуляции являются пагубные последствия как для самого организма (достижение поражающей концентрации в критических тканях), так и для организмов, использующих данный биологический вид, в качестве пищи.

Водная среда обеспечивает наилучшие условия для биоаккумуляции соединений. Здесь обитают мириады водных организмов, фильтрующих и пропускающих через себя огромное количество воды, экстрагируя при этом токсиканты, способные к кумуляции. Гидробионты накапливают вещества в концентрациях, порой в тысячи раз больших, чем содержится в воде (таблица 3).



Таблица 3. Биоаккумуляция некоторых поллютантов в организме рыб





Вещество


Фактор биоаккумуляции*


ДДТ

ТХДД

эндрин

пентахлорбензол

лептофос

трихлобензол


127000

39000

6800

5000

750

183


*Фактор биоаккумуляции - соотношение концентрации поллютанта в тканях рыб и в воде в состоянии равновесия (Le Blanс, 1995).



2.5.1. Факторы, влияющие на биоаккумуляцию



Склонность экотоксикантов к биоаккумуляции зависит от ряда факторов. Первый - персистирование ксенобиотика в среде. Степень накопления вещества в организме, в конечном счете, определяется его содержанием в среде. Вещества, быстро элиминирующиеся, в целом, плохо накапливаются в организме. Исключением являются условия, при которых поллютант постоянно привносится в окружающую среду (регионы близ производств и т.д.).

Так, синильная кислота, хотя и токсичное соединение, в силу высокой летучести не является, по мнению многих специалистов, потенциально опасным экополлютантом. Правда, до настоящего времени не удалось полностью исключить, что некоторые виды заболеваний, нарушения беременности у женщин, проживающих близ золотодобывающих предприятий, где цианиды используются в огромных количествах, не связаны с хроническим действием вещества.

После поступления веществ в организм их судьба определяется токсикокинетическими процессами (см. соответствующий раздел). Наибольшей способностью к биоаккумуляции обладают жирорастворимые (липофильные) вещества, медленно метаболизирующие в организме. Жировая ткань, как правило, основное место длительного депонирования ксенобиотиков. Так, спустя много лет после воздействия, высокое содержание ТХДД обнаруживали в биоптатах жировой ткани и плазме крови ветеранов армии США, участников вьетнамской войны. Однако многие липофильные вещества склонны к сорбции на поверхностях различных частиц, осаждающихся из воды и воздуха, что снижает их биодоступность. Например, сорбция бензпирена гуминовыми кислотами снижает способность токсиканта к биоаккумуляции тканями рыб в три раза. Рыбы из водоемов с низким содержанием взвешенных частиц в воде аккумулируют большее количество ДДТ, чем рыбы из эвтрофических водоемов с высоким содержанием взвеси.

Вещества, метаболизирующие в организме, накапливаются в меньшем количестве, чем можно было бы ожидать, исходя из их физико-химических свойств (таблица 4). Межвидовые различия значений факторов биоаккумуляции ксенобиотиков во многом определяются видовыми особенностями их метаболизма.



Таблица 4. Реальные и расчетные значения фактора биоаккумуляции некоторых токсикантов в тканях рыб





Вещество


Интенсивность биотрансформации


Факторы биаккумуляции


Расчетный


Реальный


хлордан

ПХБ

мирекс

пентахлофенол

2,3дибромпропилфосфат


низкая

низкая

низкая

высокая

высокая


47900

36300

21900

4900

4570


38000

42600

18200

780

3


(Mackay D.,1982)



2.5.2. Значение биоаккумуляции



Биоаккумуляция может лежать в основе не только хронических, но и отсроченных острых токсических эффектов. Так, быстрая потеря жира, в котором накоплено большое количество вещества, приводит к выходу токсиканта в кровь. Мобилизация жировой ткани у животных нередко отмечается в период размножения. В экологически неблагополучных регионах это может сопровождаться массовой гибелью животных при достижении ими половой зрелости. Стойкие поллютанты могут также передаваться потомству, у птиц и рыб - с содержимым желточного мешка, у млекопитающих - с молоком кормящей матери. При этом возможно развитие эффектов у потомства, не проявляющихся у родителей.



2.6. Биомагнификация



Химические вещества могут перемещаться по пищевым цепям от организмов-жертв, к организмам-консументам. Для высоко липофильных веществ это перемещение может сопровождаться увеличением концентрации токсиканта в тканях каждого последующего организма - звена пищевой цепи. Этот феномен называется биомагнификацией. Так, для уничтожения комаров на одном из калифорнийских озер применили ДДТ. После обработки содержание пестицида в воде составило 0,02 частей на миллион (ppm). Через некоторое время в планктоне ДДТ определялся в концентрации 10 ppm, в тканях планктоноядных рыб - 900 ppm, хищных рыб - 2700 ppm, птиц, питающихся рыбой - 21000 ppm. То есть содержание ДДТ в тканях птиц, не подвергшихся непосредственному воздействию пестицида, было в 1000000 раз выше, чем в воде и в 20 раз выше, чем в организме рыб - первом звене пищевой цепи.

В уже упоминавшейся ранее книге Рашель Карсон УМолчаливая веснаФ приводится такой пример. Для борьбы с переносчиком Уголландской болезниФ, поражающей вязы, вязовым заболонником Scolytes multistriatus, деревья обрабатывали ДДТ. Часть пестицида попадала в почву, где его поглощали дождевые черви и накапливали в тканях. У поедающих преимущественно дождевых червей перелетных дроздов развивалось отравление пестицидом. Часть из них погибала, у других нарушалась репродуктивная функция - они откладывали стерильные яйца. В результате, борьба с заболеванием деревьев привела к почти полному исчезновению перелетных дроздов в ряде регионов США.



3. Экотоксикодинамика



3.1. Общие понятия



Экотоксикодинамика - раздел экотоксикологиии, рассматривающий конкретные механизмы развития и формы токсического процесса, вызванного действием экотоксикантов на биоценоз и/или отдельные виды, его составляющие.

Механизмы, посредством которых вещества могут вызывать неблагоприятные эффекты в биогеоценозах, многочисленны и, вероятно, в каждом конкретном случае, уникальны. Вместе с тем, они поддаются классификации. Так, можно выделить прямое, опосредованное и смешанное действие экотоксикантов.

Прямое действие - это непосредственное поражение организмов определенной популяции или нескольких популяций (биоценоза) экотоксикантом или совокупностью экотоксикантов данного ксенобиотического профиля среды. Примером веществ с подобным механизмом действия на человека является кадмий. Этот метал накапливается в организме даже при минимальном его содержании в среде и при достижении критической концентрации инициирует токсический процесс проявляющийся поражением дыхательной системы, почек, иммуносупрессией и канцерогенезом.

Опосредованное - это действие ксенобиотического профиля среды на биотические или абиотические элементы среды обитания популяции, в результате которого условия и ресурсы среды перестают быть оптимальными для её существования.

Многие токсиканты способны оказывать как прямое, так и опосредованное, т.е. смешанное действие. Примером веществ, обладающих смешанным механизмом экотоксического действия, являются в частности гербициды 2,4,5-Т и 2,4-Д, содержащие в качестве примеси небольшое количество 2,3,7,8-тетрахлордибензо-р-диоксин (ТХДД). Широкое использование этих веществ американской армией во Вьетнаме нанесло значительный ущерб растительному, животному миру страны и непосредственно здоровью людей.



3.2. Экотоксичность



Экотоксичность - это способность данного ксенобиотического профиля среды вызывать неблагоприятные эффекты в соответствующем биоценозе. В тех случаях, когда нарушение естественного ксенобиотического профиля связано с избыточным накоплением в среде лишь одного поллютанта, можно условно говорить об экотоксичности только этого вещества.

В соответствии с представлением об уровнях организации биологических систем в экологии принято выделять три раздела (Г.В. Стадницкий, А.И. Родионов, 1996):

- аутэкологию - описание экологических эффектов на уровне организма;

- демэкологию - экологические эффекты на уровне популяции;

- синэкологию - эффекты на уровне биоценоза.

В этой связи и неблагоприятные экотоксические эффекты, целесообразно рассматривать:

- на уровне организма (аутэкотоксические) - проявляются снижением резистентности к другим действующим факторам среды, понижением активности, заболеваниями, гибелью организма, канцерогенезом, нарушениями репродуктивных функций и т.д.

- на уровне популяции (демэкотоксические) - проявляются гибелью популяции, ростом заболеваемости, смертности, уменьшением рождаемости, увеличением числа врожденных дефектов развития, нарушением демографических характеристик (соотношение возрастов, полов и т.д.), изменением средней продолжительности жизни, культурной деградацией.

- на уровне биогеоценоза (синэкотоксические) - проявляются изменением популяционного спектра ценоза, вплоть до исчезновения отдельных видов и появления новых, не свойственных данному биоценозу, нарушением межвидовых взаимоотношений.

В случае оценки экотоксичности лишь одного вещества в отношении представителей только одного вида живых существ, в полной мере могут быть использованы качественные и количественные характеристики, принятые в классической токсикологии (величины острой, подострой, хронической токсичность, дозы и концентрации, вызывающие мутагенное, канцерогенное и иные виды эффектов и т.д.). Однако в более сложных системах, экотоксичность цифрами (количественно) не измеряется, она характеризуется целым рядом показателей качественно или полуколичественно, через понятия УопасностьФ или Уэкологический рискФ.

В зависимости от продолжительности действия экотоксикантов на экосистему можно говорить об острой и хронической экотоксичности.



3.2.1. Острая экотоксичность



Острое токсического действия веществ на биоценоз может явиться следствием аварий и катастроф, сопровождающихся выходом в окружающую среду большого количества относительно нестойкого токсиканта или неправильного использования химикатов.

Истории уже известны такие события. Так, в 1984 году в г. Бхопал (Индия) на заводе американской химической компании по производству пестицидов УЮнион КарбайдФ произошла авария. В результате в атмосферу попало большое количество пульмонотропного вещества метилизоцианата. Будучи летучей жидкостью, вещество образовало нестойкий очаг заражения. Однако отравлению подверглись около 200 тыс. человек, из них 3 тысячи - погибли. Основная причина смерти - остро развившийся отек легких.

Другой известный случай острой токсикоэкологической кататстрофы имел место в Ираке. Правительством этого государства была закуплена большая партия зерна а качестве посевного материала. Посевное зерно с целью борьбы с вредителями подвергалось обработке фунгицидом метилртутью. Однако эта партия зерна случайно попала в продажу и была использована для выпечки хлеба. В результате этой экологической катастрофы отравление получили более 6,5 тыс. человек, из которых около 500 погибли.

В 2000 году в Румынии, на одном из предприятий по добыче драгоценных металлов, в результате аварии произошла утечка синильной кислоты и цианид-содержащих продуктов. Токсиканты в огромном количестве поступили в воды Дуная, отравив все живое на протяжении сотен километров вниз по течению реки.

Величайшим экологическим бедствием является использование высокотоксичных химических веществ с военными целями. В годы первой мировой войны воюющими странами было использовано на полях сражений около 120 тыс. тонн отравляющих веществ. В результате отравление получили более 1,3 млн. человек, что можно рассматривать, как одну из крупнейших в истории человечества экологических катастроф.

Острое экотоксическое действие не всегда приводит к гибели или острым заболеванием людей или представителей других биологических видов, подвергшихся воздействию. Так, среди ОВ, применявшихся в первую мировую войну, был и сернистый иприт. Это вещество, являясь канцерогеном, стало причиной поздней гибели пораженных от новообразований.



3.2.2. Хроническая экотоксичность



С хронической токсичностью веществ, как правило, ассоциируются сублетальные эффекты. Часто при этом подразумевают нарушение репродуктивных функций, иммунные сдвиги, эндокринную патологию, пороки развития, аллергизацию и т.д. Однако хроническое воздействие токсиканта может приводить и к смертельным исходам среди особей отдельных видов.

Проявления действия экотоксикантов на человека могут быть самыми разнообразными и при определенных уровнях интенсивности воздействия оказываются достаточно специфичными для действующего фактора. Это можно проследить на примере тяжелых металлов (таблица 5).



Таблица 5. Влияние тяжелых металлов питьевой воды и атмосферы окружающей среды на состояние здоровья (Колбасов С.Е. и соавторы, 1999)





Компоненты состава воды и воздуха


ПДК


Биологический эффект при избыточном поступлении в организм или превышении ПДК

(Биомаркеры ранней хронической интоксикации)


Алюминий


0,5 мг/л




Нейротоксическое действие


Барий


0,1 мг/л




Воздействие на сердечно-сосудистую и кроветворную системы


Бериллий


0,001 мг/м3




Бериллиоз, легочная и сердечная недостаточность, дерматит, конъюнктивит



(Развитие в легких диссеминированного гранулематозного процесса с клиникой бронхиолита)


Бор


0,5 мг/л




Снижение репродуктивной функции у мужчин, нарушение овариально-менструального цикла (ОМЦ) у женщин, углеводного обмена, активности ферментов, раздражение желудочно-кишечного тракта


Железо


0,3 мг/л




Аллергические реакции, болезни крови


Кадмий


0,001 мг/л




Болезнь УИтай-итайФ, увеличение кардиоваскулярных заболеваний (КВЗ), почечной, онкологической заболеваемости (ОЗ), нарушение ОМЦ, течения беременности и родов, мертворождаемость, повреждение костной ткани, поражение дыхательных путей



(Желтая кайма на деснах и вокруг шейки зуба)


Кобальт


0,1 мг/л

0,5 мг/м3




Нарушение функционального состояния ЦНС и щитовидной железы



(Хронический ринофаринголарингит с гипо- и аносмией)


Марганец


0,1 мг/л

0,3 мг/м3




Анемия, нарушение функционального состояния ЦНС (Астенические расстройства: утомляемость, сонливость, снижение активности)


Медь


1,0 мг/л




Наличие врожденных заболеваний, изменение водно-солевого и белкового обменов, окислительно-восстановительных реакций крови, нарушение ОМЦ, течения родов и лактации, поражение печени и почек


Молибден


0,25 мг/л




Увенличение КВЗ, заболеваемости подагрой, эндемическим зобом, нарушение ОМЦ


Мышьяк


0,05 мг/л

0,05 мг/м3




Арсеноз, нейротоксическое действие, поражение кожи, ОЗ



(Трофические поражения кожи - пигментация, шелушение, гиперкератозы, выпадение волос)


Никель


0,1 мг/л

0,5 мг/м3




Поражение сердца, печени, ОЗ, кератиты



(Поражения верхних дыхательных путей - хронические субатрофические ринофарингиты, гипо- и аносмия; аллергодерматозы; серый налет по краю десен)


Ртуть


0,0005мг/л

0,01 мг/м3




Нарушение функции почек, нервной системы, зрения, слуха, осязания, врожденные пороки развития



(Вегетативно-сосудистая дистония, неврастения)


Свинец


0,03 мг/л

0,01 мг/м3




Поражение почек, нервной системы, органов кроветворения, КВЗ, авитаминозы С и В



(Снижение активности дегидратазы аминолевулиновой кислоты крови до 10 мкмоль/мин л; увеличение содержания в моче АЛК до 114 мкмоль/г и копропорфирина до 458 нмоль/г; изменение уровня андрогенов)


Селен


 




Ускорение кариеса зубов у детей, ОЗ


Стронций


7,0 мг/л




Стронциевый рахит


Таллий


0,01 мг/м3




Поражение нервной системы, желудочно-кишечного тракта, печени, почек



(Утомляемость, головные боли. плохой сон, боли в конечностях, диспептические расстройства)


Хром


0,5 мг/л

0,01 мг/м3




Дерматиты, экземы (Ухромовые язвыФ), бронхиты, нарушения функций печени, почек



(Раздражение верхних дыхательных путей. аллергические поражения кожи и органов дыхания)


Цинк


1,0 мг/л




Анемия, изменения функций ЦНС, поражение почек, увеличение частоты заболеваний печени и КВЗ


В большинстве случаев экотоксиколог сталкивается со случаями именно хронической экотоксичности. По сути, хроническое воздействие экополлютантов - основная проблема экологии.



3.2.3. Механизмы экотоксичности



В современной литературе приводятся многочисленные примеры механизмов действия химических веществ на живую природу, позволяющие оценить их сложность и неожиданность.

1. Прямое действие токсикантов, приводящее к массовой гибели представителей чувствительных видов. Применение эффективных пестицидов приводит к массовой гибели вредителей: насекомых (инсектициды) или сорняков (гербициды). На этом экотоксическом эффекте строится стратегия использование химикатов. Однако в ряде случаев отмечаются сопутствующие негативные явления. Так в Швеции, в 50-60 гг. для обработки семян зерновых культур широко использовали метилртутьдицианамид. Концентрация ртути в зерне составляла более 10 мг/кг. Периодическое склевывание протравленного семенного зерна птицами привело к тому, что через несколько лет была отмечена массовая гибель фазанов, голубей, куропаток и других зерноядных пернатых от хронической интоксикации ртутью.

При оценке экологической обстановки необходимо иметь в виду основной закон токсикологии: чувствительность различных видов живых организмов к химическим веществам всегда различна. Поэтому появление поллютанта в окружающей среде даже в малых количествах может быть пагубным для представителей наиболее чувствительного вида. Так, хлорид свинца убивает дафний в течение суток при содержании его в воде в концентрации около 0,01 мг/л, малоопасной для представителей других видов.

2. Прямое действие ксенобиотика, приводящее к развитию аллобиотических состояний и специальных форм токсического процесса. В конце 80-х годов в результате вирусных инфекций в Балтийском, Северном и Ирландском морях погибло около 18 тысяч тюленей. В тканях погибших животных находили высокое содержание полихлорированных бифенилов (ПХБ). Известно, что ПХБ, как и другие хлорсодержащие соединения, такие как ДДТ, гексахлорбензол, диелдрин обладают иммуносупрессивным действием на млекопитающих. Их накопление в организме и привело к снижению резистентности тюленей к инфекции. Таким образом, непосредственно не вызывая гибели животных, поллютант существенно повышал их чувствительность к действию других неблагоприятных экологических факторов.

Классическим примером данной формы экотоксического действия является увеличение числа новообразований, снижение репродуктивных возможностей в популяциях людей, проживающих в регионах, загрязненных экотоксикантами (территории Южного Вьетнама - диоксин).

3. Эмбриотоксическое действие экополлютантов. Хорошо установлено, что ДДТ, накапливаясь в тканях птиц, таких как кряква, скопа, белоголовый орлан и др., приводит к истончению скорлупы яиц. В итоге птенцы не могут быть высижены и погибают. Это сопровождается снижением численности популяции птиц.

Примеры токсического действия различных ксенобиотиков (в том числе лекарственных препаратов) на эмбрионы человека и млекопитающих широко известны (см. раздел УТератогенезФ).

4. Прямое действие продукта биотрансформации поллютанта с необычным эффектом. Полевые наблюдения за живородящими рыбами (карпозубые) в штате Флорида позволили выявить популяции с большим количеством самок с явными признаками маскулинизации (своеобразное поведение, модификация анального плавника и т.д.). Эти популяции были обнаружены в реке, ниже стока завода по переработке орехов. Первоначально предположили, что стоки содержат маскулинизирующие вещества. Однако исследования показали, что такие вещества в выбросах отсутствуют: сточная вода не вызывала маскулинизацию. Далее было установлено, что в сточных водах содержался фитостерон, (образуется в процессе переработки сырья), который попав в воду реки подвергался воздействию обитающих здесь бактерий и превращался при их участии в андроген. Последний и вызывал неблагоприятный эффект (рисунок 3).





Рисунок 3. Превращение фитостерола в андроген при участии микроорганизмов.



Таким образом, взаимодействие ксенобиотика с биотическим компонентом среды (микроорганизмы) может стать причиной существенных популяционных эффектов в биоценозе.

5. Опосредованное действие путем сокращения пищевых ресурсов среды обитания. Для борьбы с вредителями лесного хозяйства, гусеницами елового листовертки-почкоеда в одном из регионов Канады применили фосфорорганический пестицид, быстро деградирующий в среде. В результате резкого снижения числа гусениц от бескормицы погибло около 12 млн птиц.

6. Взрыв численности популяции вследствие уничтожения вида-конкурента.

В США после начала применения синтетических пестицидов для борьбы с некоторыми видами вредителей растений стали интенсивно размножаться малочисленные ранее виды клещей-хлопкоедов. Количество опасных видов таких клещей увеличилось с 6 до 16. Это явление объясняют тем, что в мире насекомых существует сложная система взаимоотношений, и количество особей в популяции растительноядных насекомых зачастую контролируется другими видами, которые либо паразитируют на этих насекомых, либо ведут себя по отношению к ним как хищники. Воздействие пестицидов может оказаться более выраженным на представителей видов-хищников. В итоге - гибель врагов приводит к взрыву численности растительноядных насекомых.

Нетрудно заметить, что приведенные в качестве примеров механизмы экотоксического действия веществ на животных при иных условиях вполне могут реализоваться и в отношении человека.



4. Экотоксикометрия



4.1. Общая методология



Экотоксикометрия - раздел экотоксикологии, в рамках которого рассматриваются методические приемы позволяющие оценить (перспективно или ретроспективно) экотоксичнсоть ксенобиотиков.

Все виды классических количественных токсикологических исследований в полной мере используются для определения экотоксичности ксенобиотиков (см раздел УТоксикометрияФ).

Острая токсичность экополлютантов определяется экспериментально на нескольких видах, являющихся представителями различных уровней трофической организации в экосистеме (водоросли, растения, беспозвоночные, рыбы, птицы, млекопитающие). Агентство по защите окружающей среды США требует при определении критериев качества воды, содержащей некий токсикант, определения его токсичности, по крайней мере, на 8 различных видах пресноводных и морских организмов (16 тестов).

Неоднократно делались попытки ранжировать виды живых существ по их чувствительности к ксенобиотикам. Однако для различных токсикантов соотношение чувствительности к ним живых существ различно. Более того, использование в экотоксикологии Устандартных видовФ представителей определенных уровней экологической организации, для определения экотоксичности ксенобиотиков, с научной точки зрения, не корректно, поскольку чувствительность животных даже близких видов, порой отличается очень существенно.

Условные данные для оценки токсичности веществ для биоты представлены в таблице 6.



Таблица 6. Группы токсичности ксенобиотиков для позвоночных животных





LC50 для рыб (мг/л)


LD50 для птиц и млекопитающих (мг/кг)


Степень токсичности


Пример


более 100

10 - 100

1 - 10

менее 1


более 5000

500 - 5000

50 - 500

менее 50


мало токсичные

умеренно токсичные

токсичные

высоко токсичные


барий

кадмий

дихлорбензол

алдрин


При оценке экотоксичности необходимо учитывать, что хотя практически все вещества могут вызывать острые токсические эффекты, хроническая токсичность выявляется далеко не у каждого соединения. Косвенной величиной, указывающей на степень опасности вещества при его хроническом действии, является соотношение концентраций, вызывающих острые (ЛК50) и хронические (порог токсического действия) эффекты. Если это соотношение менее 10, вещество рассматривается как малоопасное при хроническом воздействии (таблица 7).



Таблица 7. Острая и хроническая токсичность пестицидов для рыб (условия лаборатории)



Пестицид


ЛК50 (мкг/л)


Токсичность


Порог действия* (мкг/л)


Коэффициент опасности


эндосульфан

хлордекон

малатион

карбарил


166

10

3000

15000


высокая

высокая

токсичен

умеренная


4,3

0,3

340

378


39

33

8,8

40


*Пороговая концентрация вещества, по критерию Ухроническая токсичностьФ



При оценке хронической экотоксичности вещества необходимо учитывать следующие обстоятельства:

1. Определение коэффициента опасности является лишь самым первым шагом по определения экотоксического потенциала вещества. В условиях лаборатории пороговые концентрации хронического действия токсикантов определяют, оценивая показатели летальности, роста, репродуктивных способностей группы. Изучение других последствий хронического действия веществ порой может привести к иным числовым характеристикам.

2. Исследования токсичности проводят на животных, пригодных для содержания в условиях лаборатории. Получаемые при этом результаты нельзя рассматривать как абсолютные. Токсиканты могут вызывать хронические эффекты у одних видов, и не вызывать - у других.

3. Взаимодействие токсиканта с биотическими и абиотическими элементами окружающей среды может существенно сказаться на его токсичности в естественных условиях (см. выше). Однако это не подлежит изучению в условиях лаборатории.

Специфическим методом экотоксикометрии является метод оценки экологического риска.



4.2. Оценка экологического риска



Важнейшей характеристикой ксенобиотиков с позиции экотоксикологии является их экотоксическая опасность. Опасность - это потенциальная способность вещества в конкретных условиях вызывать повреждение биологических систем при попадании в окружающую среду. Потенциальная опасность вещества, определяется его стойкостью в окружающей среде (персистирование), способностью к биоаккумуляции (накопление в организмах животных и растений), величиной токсичности для представителей различных биологических видов.

Оценка экологического риска - это процесс определения вероятности развития неблагоприятных эффектов со стороны биогеоценозов (включая популяции человека) в результате изменений различных характеристик среды. Важным элементом оценки экологического риска является выявление опасности, связанной с возможным массивным воздействием на среду различных химических веществ (изменение естественного ксенобиотического профиля среды) и определение вероятности такого воздействия. В системе оценки экологического риска любое воздействие (будь то химический фактор или энергетическое поле), вызывающее изменения в биологических системах (как позитивные, так и негативные), называется стрессором. В этом смысле любой экотоксикант - несомненно стрессор.

Как правило оценка экологического риска проводится в форме заказного исследования, выполняемого с целью получения информации, носящей перспективный или ретроспективный характер, и необходимой заказчику (законодательные, управленческие структуры и т.д.) для принятия административных решений. Поэтому, в отличие от научных экотоксикологических исследований, в ходе которых рассматриваются объективные закономерности реакций биоценоза на действие стрессора, при определении экотоксического риска, в качестве объектов среды, подлежащих изучению и УзащитеФ, могут выступать характеристики биосистемы, имеющие антропоцентрическое значение, а порой и отдельные элементы окружающей человека природы, субъективно воспринимаемые общественным мнением, как весьма значимые.

Методология оценки экологического риска до конца не разработана. В подавляющем большинстве случаев её выводы носят качественный, описательный характер. Попытки внедрить методы количественной оценки сталкиваются с серьезными трудностями. Это обусловлено сложностью экосистем, комплексностью воздействия на среду стрессоров (не только химической, но и физической и биологический природы), недостаточной изученностью характеристик экотоксической опасности огромного количества ксенобиотиков, используемых человеком и т.д. В этой связи, по мнению самих экологов, в настоящее время оценка экологического риска в значительной степени является искусством.

Поскольку процедура оценки риска сложна и в значительной степени страдает известной неопределенностью, с целью стандартизации исследований, Агентство по Защите Окружающей среды США (EPA) разработало и утвердило план проведения таких работ. Он содержит описание последовательности решения задачи, организации и анализа данных, учета неопределенностей и допущений с целью получения в какой-то степени унифицированной приблизительной информации о вероятности развития неблагоприятных экологических эффектов.

Согласно этому плану оценка экологического риска включает этапы:

1. Формулирование проблемы и разработка плана анализа ситуации.

2. Анализ экологической ситуации.

3. Обработка данных, формирование выводов и представление материалов заказчику.

Этапы оценки экологического риска представлены на схеме 1.







Схема 1. Этапы оценки экологического риска.



5. Характеристика некоторых экотоксикантов, опасных для человека



Наибольшую опасность, как экотоксиканты, для человека представляют вещества, длительно сохраняющиеся в окружающей среде и организме и способные, действуя в малых дозах, инициировать хронические интоксикации, аллобиотические состояния и специальные формы токсического процесса. К числу таких прежде всего относятся полигалогенированные ароматическкие углеводороды и некоторые металлы.



5.1. Полигалогенированные ароматические углеводороды



Группа полигалогенированных полициклических углеводородов включает галогенпроизводные некоторых ароматических углеводородов, например, диоксина, дибензофурана, бифенила, бензола и др.

Галогенированные токсиканты, содержащие один атом кислорода в молекуле, называют дибензофуранами, два атома - диоксинами, если вещества не содержит кислорода - это бифенилы (рисунок 4). Атомы галогенов (хлора или брома) замещают один и более атомов водорода, входящих в структуру бензольных колец.







Рисунок 4. Структура молекул некоторых полициклических углеводородов



Вещества могут образовываться при взаимодействии хлора с ароматическими углеводородами в кислородной среде, в частности, при хлорировании питьевой воды.

К другим источникам веществ относятся: термическое разложение различных химических продуктов, сжигание осадков сточных вод и других отходов, металлургическая промышленность, выхлопные газы автомобилей, возгорание электрического оборудования, лесные пожары, и наконец производство некоторых видов продукции (см. ниже).



5.1.1. Диоксины



Разнообразие химической структуры диоксинов определяется числом атомов и типом галогена, возможностью изомерии. В настоящее время насчитывается несколько десятков семейств этих ядов, а общее число соединений превышает 1 тыс.

2,3,7,8-тетрахлордибензо-пара-диоксин (ТХДД, УдиоксинФ) - самый токсичный представитель группы.

При оценке токсичности 2,3,7,8-тетрахлордибензо-пара-диоксина выявляются значительные межвидовые различия (таблица 8).



Таблица 8. Токсичность диоксина для разных видов животных.





Вид животного


ЛД50, мкг/кг


Морская свинка


0,6-2,5


Норка


4


Крыса


22-45


Обезьяна


менее 70


Кролик


115-275


Мышь


114-280


Собака


менее 300


Лягушка-бык


менее 500


Хомяк


5000


Примечание: токсичность ТХДД для человека, по-видимому, сопоставима с таковой для приматов.



Вещество образуется как побочный продукт в процессе синтеза 2,4,5-трихлофеноксиуксусной кислоты и трихлорфенола.

Во второй половине 20 столетия зарегистрированы более 200 аварий и инцидентов на предприятиях по производству хлорированных фенолов, при которых отмечался выброс ТХДД в атмосферу. Самая крупная - авария в Севезо (Италия, 1976 г). За последние 40 лет в результате аварий на таких производствах пострадало более 1500 человек. Экологические последствия действия веществ могут оказаться значительно более существенными.

Примером неблагоприятного воздействия на экосистемы ТХДД является химическая война во Вьетнаме, где американцы и их союзники применили не менее 100 тыс. тонн гербицидов. При этом в окружающую среду поступило 200-500 кг диоксина (более 1 109 смертельных доз для приматов).

ТХДД представляет собой кристаллическое вещество. Хорошо растворяется в липидах и органических растворителях, особенно в хлорбензоле. В воде не растворим. Практически не летуч.

Вещество отличается необычайной стойкостью, накапливается в объектах внешней среды, организмах животных, передается по пищевым цепям. Диоксин относят к УсуперэкотоксикантамФ.

Во внешней среде ТХДД абсорбируются на органических, пылевых и аэрозольных частицах, разносятся воздушными потоками, поступают в водные экосистемы. В донных отложениях стоячих водоемов яд может сохраняться десятки лет. В почве возможна медленная микробная деградация диоксинов. Период полуэлиминации из почвы определяется конкретными климато-географическими условиями и характером почвы.

В Российской Федерации установлен единый регламент на содержание полихлорированных дибензо-пара-диоксинов и дибензофуранов в почве - 0,133 пг/г.

Ежесуточное предельно допустимое поступление диоксина в организм человека в разных странах определено по-разному: от 1 до 200 пг/кг массы.

Токсикокинетика. Диоксины, поступившие в организм с зараженной пищей или ингаляционно, подвергаются медленной биотрансформации. Значительная часть токсикантов накапливается в жировой ткани. Через 15 лет после окончания химической войны содержание ТХДД в жировой ткани жителей зараженных районов Вьетнама было в 3-4 раза выше, чем у жителей Европы и США (Schecter et al., 1989).

Период полувыведения 2,3,7,8 - ТХДД у представителей разных видов не одинаков. Он составляет: у мышей, хомяков (в днях) - 15; крыс - 30; морских свинок - 30-94; обезьян - 455; у человека - 2120 (5-7 лет) (Федоров Л.А., 1993).

Токсикодинамика. Для токсического процесса характерен продолжительный скрытый период. После введения яда в летальных дозах грызунам гибель развивается спустя 3 и более недель. У крупных животных этот период еще более продолжителен. Течение даже острого поражения крайне вялое и растягивается на месяцы.

У разных биологических видов выявляются особенности проявления токсического процесса (таблтца 9).



Таблица 9. Проявления поражений диоксином у представителей различных видов млекопитающих





Эффект


Человек


Обезьяна


М.свинка


Мышь


Цыпленок


Крыса


Хлоракне


+


+


-


-


-


-


Потеря веса


+


+


+


+


+


+


Поражение печени


+


+


_


+


+


+


Отеки


+


+


-


+


+


-


Атрофия тимуса


+


+


+


+


+


+


В клинической картине вначале преобладает синдром общей интоксикации (истощение, анорексия, общее угнетение, адинамия, эозинопения, лимфопения, лейкоцитоз). Позднее присоединяются симптомы органоспецифической патологии (гиперплазия и/или метаплазия эпидермальных производных кожи, поражение печени, тканей иммунокомпетентных систем, проявления панцитопенического синдрома и др.).

Характерно эмбриотоксическое и тератогенное действие. ТХДД - канцероген.

У людей наиболее ранним и наиболее частым признаком поражения является хлоракне. Нередко это единственный эквивалент токсического воздействия диоксином. Поражение может сохраняться длительно, особенно в условиях промышленного производства, когда трудно определить возможность повторного контакта с ядом. По-видимому, минимальный срок сохранения хлоракне - 10 лет.

Как результат контакта с диоксином у жителей неблагополучных районов Южного Вьетнама часто выявлялся астенический синдром, болезни гепатобилиарной системы, болезни кожи и подкожной жировой клетчатки, заболевания ЛОР-органов, зоб, врожденные пороки развития. Частота самопроизвольных абортов на зараженной территории возросла в 2,2-2,9 раз, частота врожденных пороков развития увеличилась в 12,7 раз.

Австралийская Королевская комиссия оценила последствия воздействия оранжевого агента на ветеранов войны во Вьетнаме и их потомство. Получены данные о высокой перинатальной и ранней смертности среди детей ветеранов.



5.1.2. Полихлорированные бифенилы (ПХБ)



ПХБ это класс синтетических хлорсодержащих полициклических соединений, используемых в качестве инсектицидов. В США для этой цели они производились с 1929 по 1977 год под промышленной маркой Арохлор. Кроме того, ПХБ широко использовались при производстве электрооборудования, в частности, трансформаторов и усилителей (охлаждающие жидкости), а также в качестве наполнителей при производстве красителей и пестицидов, смазочных материалов для турбин, гидравлических систем, текстиля, бумаги, флуоресцентных ламп, телевизионных приемников и др.

Такое широкое использование ПХБ было обусловлено их высокой термостойкостью, химической стабильностью, диэлектрическими свойствами. В 70-е годы в лабораторных и натурных исследованиях была установлена высокая опасность этих веществ обусловленная способностью персистировать в окружающей среде и токсичностью для лабораторных животных. В 1979 году производство веществ в США было запрещено.

На рисунке 5 представлена структура одного из представителей галогенированных бифенилов. Теоретически возможно существование 209 изомеров вещества.



 



Рисунок 5. Структура молекулы ПХБ. Хлор может замещать атомы водорода при любом атоме углерода. Представлена структура 3,5,3*,5*-тетрахлорбифенила



При остром воздействии вещества обладают сравнительно низкой токсичностью. В зависимости от строения изомера и вида экспериментального животного средняя смертельная доза колеблется в интервале от 0,5 до 11,3 г/кг. Хлорзамещенные бифенилы в мета- и параположении более токсичны.

Токсикокинетика. В организм млекопитающих и человека ПХБ могут проникать через кожу, легкие и желудочно-кишечный тракт. На производстве основной способ поступления веществ - через кожные покровы, в то время как в повседневной жизни большее количество веществ поступает в организм с загрязненной пищей.

Попав в кровь, вещества быстро накапливаются в печени и мышцах, откуда затем, перераспределяются в жировую ткань. Коэффициент распределения веществ в тканях - мозг : печень : жир - составляет в среднем 1 : 3,5 : 81.

ПХБ метаболизируют в основном в печени с образованием гидроксилированных фенольных соединений, через промежуточный продукт - ареноксид. Возможно дегалогенирование соединений. Скорость метаболизма зависит от структуры изомера и вида экспериментального животного, на котором изучается процесс. Собаки и грызуны метаболизируют ПХБ с большей скоростью, чем приматы. Их введение в организм сопровождается усилением метаболизма других ксенобиотиков. Основные пути выведения: с желчью в содержимое кишечника и через почки с мочой. В зависимости от строения изомеров период полувыведения ПХБ из организма человека колеблется от 6 -7 до 33 - 34 месяцев.

Токсикодинамика. Наибольшую опасность представляют подострые и хронические воздействия ПХБ, которые приводят к развитию многообразных эффектов: прогрессивному падению веса, хлоракне, выпадению волос, отекам, инволюции тимуса и лимфоидной ткани, гепатомегалии, угнетению костного мозга, нарушению репродуктивных функций и т.д. Изменения иммунного статуса не однозначны: отмечается как иммуносупрессивное, так и активирующее действие ПХБ. В эксперименте частота инфекционных заболеваний среди лабораторных животных увеличивается. У животных, подвергшихся воздействию токсикантов в пренатальном, неонатальном и постнатальном периоде развиваются неврологические знаки, проявляющиеся, главным образом, нарушением поведения: склонностью к стереотипным УманежнымФ движениям, гипер- или гипоактивности.

У человека наиболее достоверным проявлением действия ПХБ является патология кожных покровов, и в частности, хлоракне.

В условиях производства или при проживании на зараженной местности, отмечается неблагоприятные последствия действия токсикантов на репродуктивные функции женщин и плод. Это проявляется преждевременными родами, снижением веса новорожденных, микроцефалией, отставанием в умственном и физическом развитии детей.

Получены многочисленные данные, свидетельствующие о мутагенном действии ПХБ. В опытах на животных показана способность веществ образовывать аддукты с молекулами ДНК. Однако у человека этот вид токсического действия не подтвержден. Хроническое действие ПХБ в эксперименте проявляется увеличением числа опухолей печени. Показано также, что эти вещества могут являться модификаторами действия известных канцерогенов, выступая в роли промоторов или ингибиторов опухолевого роста. Так, в опытах на животных доказана их роль как промоторов гепатоцеллюлярных опухолей и неопластических изменений, развивающихся при действии N-нитрозаминов. Свойства промоторов у различных изомеров ПХБ выражены тем сильнее, чем в большей степени они способны активировать цитохром Р-450-зависимые оксидазы, чувствительные к 3-метилхолантрену. Канцерогенность ПХБ для человека не доказана.



5.1.3. Хлорированные бензолы (ХБ)



Хлорированные бензолы - это группа химических соединений, используемых в качестве органических растворителей, пестицидов, фунгицидов, компонентов химического синтеза. Они представляют собой молекулу бензола, в которой атомы водорода замещены 1 - 6 атомами хлора (рисунок 6)







Рисунок 6. Структура молекулы гексахлорбензола



Как правило, воздействию веществами люди подвергаются в производственных условиях, однако в последнее время достаточно высокое количество веществ стали обнаруживать в окружающей среде: воздухе, почве, продовольствии, воде. Чем выше степень хлорирования молекулы, тем ниже растворимость в воде, летучесть веществ.

Токсикокинетика. Хлорированные бензолы - липофильные вещества и потому способны к биоаккумуляции в тканях животных и человека (хотя и в меньшей степени, чем другие хлорированные ароматические углеводороды).

В опытах на животных показано, что вещества, попавшие в организм метаболизируют в печени при участии цитохром-Р-450-зависимых оксидаз до хлорированных фенолов, через стадию ареноксидов. Часть ксенобиотика, попавшего в организм, связывается с клеточными белками и подвергается превращению путем дегалогенирования молекулы. Метаболизм веществ в организме человека практически не изучен. У лиц, подвергшихся воздействию ХБ, метаболиты определялись в крови, жировой ткани, моче, выдыхаемом воздухе.

Хлорированные фенолы выделяются с мочой и калом в основном в форме серусодержащих конъюгатов. Скорость элиминации низка. Полагают, что ХБ могут депонироваться в тканях человека на период до 15 лет (Burton, Bennett, 1987).

Токсикодинамика. Основным проявлением острого токсического действия ХБ является porphyria cutanea tarda. Этот эффект, в частности, развился у лиц, употребивших в пищу зерно, обработанное гексахлобензолом (Турция, 1950).

Данные о других проявления поражения ХБ малочисленны и противоречивы. Сообщается, что у лиц, подвергшихся острому воздействию 1,2-дихлорбензола, развились беспокойств, головная боль, чувство слабости, тошнота, раздражение глаз и слизистых дыхательных путей. У обследованных обнаружено повышение числа хромосомных аберраций в лейкоцитах периферической крови (8,9% против 2% в контроле).

Исследования на животных свидетельствуют о способности веществ (гексахлобензола, дихлорбензола) вызывать карциному печени, почек и аденому паращитовидной железы. Исследования на генотоксичность веществ дают отрицательных результат. Не удалось получит объективных данных о канцерогенности ХБ для человека.



5.2. Металлы



5.2.1. Кадмий



Cd представляет собой серебристый, кристаллический металл, напоминающий цинк. Валентность кадмия в его кислородных соединениях: +1, +2. Чаще металл образует двухвалентные соединения, включая оксиды, гидроксиды, сульфиды, селениды, теллуриды, галлиды. В водных растворах образует с галлидами комплексные анионы.

Металл широко распространен в окружающей среде. Он встречается в природе в форме редких минералов гринокит (CdS) и отавит (CdCO4). Оба соединения обнаруживаются в цинковых и цинково-свинцовых рудах. Потребление кадмия и загрязнение им почвы, воды и воздуха в результате производственной деятельности неуклонно возрастает. Источниками большинства антропогенных загрязнений являются: выброс кадмия в сточные воды, производство и использование фосфатных удобрений, сжигание отходов, угля бензина и т.д. Однако больше всего в окружающую среду кадмий поступает в виде побочного продукта при выплавке и электролитической очистке Zn.

Таблица 10. Производства и процессы опасные в плане воздействия кадмия





Производство (выплавка) кадмия

Выплавка цинка и свинца

Электроанодирование металлов

Изготовление кадмиево-никилиевых батарей

Переплавка анодированных кадмием металлов

Производство сплавов (с медью, серебром)

Производство стабилизаторов пластмасс

Производство красителей

Ювелирное производство

Электронная промышленность


Кадмий относится к числу высокотоксичных металлов. Он действует на самые разные органы и системы. Металл обладает очень высокой кумулятивной способностью. Пары кадмия, образуемые при плавлении, являются чрезвычайно опасными и представляют собой основную причину острых смертельных интоксикаций металлами. Установленные и подозреваемые эффекты кадмия (от гипертонии до канцерогенеза) наряду с его широким и все возрастающим использованием и накоплением в окружающей среде заставляют предположить, что этот металл представляет наивысшую угрозу человечеству, как экополлютант.

В большинстве стран отсутствует регламент на содержание Сd в пищевых продуктах. ВОЗ рекомендует максимально допустимую дозу металла, поступающую с водой и пищей Ц до 400-500 мкг/неделю, в качестве максимально допустимого уровня заражения воздуха концентрацию 10 мкг/м3 .

Токсикокинетика. Поступление кадмия per os - основной путь воздействия, не связанный с производством. Содержание Сd в различных пищевых продуктах колеблется от 0,001 до 1,3 частей на миллион (1,3 мкг/г), а суточное потребление Сd с водой и продовольствием составляет в среднем 10-30 мкг. В сильно загрязненных регионах потребление может составить до 400 мкг/сутки. Особенно много Сd содержится в печени и почках убоины, а также морепродуктах. Растительные продукты в целом содержат больше Сd, чем мясные.

Ингаляция Ц другой важный путь поступления Сd в организм. Средняя концентрация Сd в воздухе в различных регионах неодинакова: в сельской местности - 1-6 нг/м3, в городах - 5-60 нг/м3, индустриальных регионах - 20-700 нг/м3. Ежедневное поступление Сd с вдыхаемым воздухом колеблется в интервале от 0,02 мкг/сут до 2 мкг/сутки. Таким образом, даже в сильно загрязненной местности пища и вода Ц основной источник поражения населения кадмием.

Дополнительный источник поступления кадмия в организм Ц курение. Дело в том, что табак активно кумулирует кадмий, содержащийся в загрязненной почве. Установлено, что курильщик ежедневно выкуривающий пачку сигарет дополнительно ингалирует около 2 мкг Сd/сутки.

Абсорбция кадмия в первую очередь зависит от пути поступления, а затем уже от строения соединения. Большинство солей кадмия плохо абсорбируются в желудочно-кишечном тракте. По расчетам лишь около 5% вещества, попавшего в желудочно-кишечный тракт, всасывается в кровь, хотя ряд факторов, таких как характер пищи и железодефицитная анемия, могут усиливать поступление вещества. Время прохождения металла по желудочно-кишечному тракту достаточно продолжительно, вероятно, вследствие захвата его клетками слизистой оболочки.

Абсорбция в дыхательной системе проходит достаточно полно. В зависимости от степени растворимости в воде ингалированных соединений всасывается до 90% вещества проникшего в глубокие отделы дыхательной системы.

Поступивший в кровь кадмий быстро связывается эритроцитами и альбуминами плазмы. Связавшийся с плазмой металл быстро переходит в различные ткани и органы, преимущественно печень и почки (до 50% поступившего в организм Сd).

Кадмий очень медленно выводится из организма. Период его полувыведения из организма человека составляет по современным оценкам 25-30 лет. Первоначально Сd в неизмененном состоянии выделяется через почки. Однако после развития нефропатии происходит значительное увеличение выведения элемента с мочой в комплексе с металлотионеином.

Примерно 95% Сd, попавшего в желудочно-кишечный тракт, выделяется с калом в силу плохой всасываемости металла.

Токсикодинамика. Кадмий и его соединения представляют реальную опасность, как при остром, так и хроническом воздействии.

Острая интоксикация может развиться как при ингаляционном, так и алиментарном поступлении Сd в организм. Однако для этого нужны достаточно высокие дозы и концентрации. Так, для крыс ЛД50 при внутрижелудочном введении CdO равна 72 мг/кг, CdSO3 - 88 мг/кг, CdCl2 - 94 мг/кг, CdSO4 - 2425 мг/кг. При вдыхании в течение получаса крысами аэрозоля CdO, образующегося при сжигании Cd на пламени электрической дуги, ЛК50, составляет 45 мг/м3.

Хроническое поражение людей зараженной Сd водой, которую использовали для ирригации рисовых полей, проявлялось, в частности, в форме болезни Итай-итай (Япония).

Проявления хронического воздействия кадмия наиболее отчетливо прослеживаются со стороны дыхательной системы и почек. Поражение легких возникает исключительно при ингаляционном способе воздействия, в то время как почки страдают при поступлении кадмия в организм всеми возможными способами.

Другими эффектами хронического действия металла являются поражения опорно-двигательного аппарата, нарушение функций сердечно-сосудистой системы. Длительное введение металла экспериментальным животным (крысы) сопровождается некрозом нервных клеток чувствительных ганглиев и аксональной дегенерацией и демиелинизацией периферических нервных стволов.

Иммуносупрессивное действие кадмия может быть причиной канцерогенеза, встречающегося у работников, контактирующих с металлом.

Данные, полученные на животных свидетельствуют о том, что Сd может быть сильным канцерогеном. Однако проведенные эпидемиологические обследования не привели к получению однозначных результатов. Так, в ходе эпидемиологических исследований, проведенных Waalkes и Oberdorster (1990), не удалось зарегистрировать абсолютную связь между действием Сd и канцерогенезом, хотя в опытах на грызунах было установлено, что хроническое воздействие кадмия приводит к развитию аденокарциномы легких. С другой стороны, установлено, что профессиональное воздействие смеси токсикантов, среди которых был и Сd, приводит к значительному росту числа опухолей почек (Kolonel, 1976). Тем не менее до настоящего времени Сd не рассматривается как безусловный канцероген для человека.

Тератогенное действие Сd выявляется в опытах на животных. У человека тератогенное действие Сd не зарегистрировано.



Заключение



Основные практические результаты в экотоксикологии получаются в настоящее время в ходе эмпирических исследований в реальных полевых условиях и лабораториях. В будущем необходимо продолжить работы, направленные на установление основных феноменов этой науки. Среди них следует отметить следующие направления:

-выявление видов живых организмов (прежде всего среди определяющих благополучие человеческой популяции), обладающих повышенной чувствительностью к наиболее опасным экополлютантам;

-изучение закономерностей взаимодействий ксенобиотиков с абиотическими элементами окружающей среды, приводящих к формированию экотоксических эффектов;

-раскрытие закономерностей формирования неблагоприятных эффектов при сочетанном действии веществ, составляющих ксенобиотический профиль среды, влияние на экотоксичность стрессоров нехимической природы;

- выявление молекулярных и клеточных маркеров, позволяющих выявлять токсическое действие ксенобиотиков на экосистемы, до их проявления на уровне популяций и т.д.



  << Содержание


 

ЧЧЕТИ