Медико-биологический
информационный портал
для специалистов
 
Medline.ru

СОДЕРЖАНИЕ ЖУРНАЛА:
Физико-химическая биология

Клиническая медицина

Профилактическая медицина

Медико-биологические науки


АРХИВ:

Фундаментальные исследования

Организация здравохраниения

История медицины и биологии



Последние публикации

Поиск публикаций

Articles

Архив :  2000 г.  2001 г.  2002 г. 
               2003 г.  2004 г.  2005 г. 
               2006 г.  2007 г.  2008 г. 
               2009 г.  2010 г.  2011 г. 
               2012 г.  2013 г.  2014 г. 
               2015 г.  2016 г.  2017 г. 
               2018 г.  2019 г.  2020 г.  2021 г.  2022 г.  2023 г. 

Редакционная информация:
        Опубликовать статью
        Наша статистика


 РЕДАКЦИЯ:
Главный редактор

Заместители главного редактора

Члены редколлегии
Специализированные редколлегии


 УЧРЕДИТЕЛИ:
Институт теоретической и экспериментальной биофизики Российской академии наук.

ООО "ИЦ КОМКОН".




Адрес редакции и реквизиты

199406, Санкт-Петербург, ул.Гаванская, д. 49, корп.2

ISSN 1999-6314

Российская поисковая система
Искать: 


«
Vol. 22, Art. 40 (pp. 571-593)    |    2021       
»

Morphological characteristics of the perifocal zone of glioblastoma using radiation, immunohostochemical and immunofluorescent methods
Galkovsky B.E., Mitrofanova L.B., Ryzhkova D.V., Sulin K.A., Gulyaev D.A., Danilova I.A., Sidorin V.S., Gaikova O.N.

Almazov National Medical Research Centre



Brief summary

Glioblastoma (GBM) is a malignant brain tumor with high resistance to radio- and chemotherapy. Patient survival rates remain low, with average life expectancy after diagnosis being 13-15 months. Radical surgical resection is one of the main aspects of GBM treatment. As before, the questions of determining the boundaries, morphological composition and biological potential of the GBM perifocal zone remain open. The aim of the study was to study the expression of FoxM1 and Ki-67, as well as the fluorescence of protoporphyrin IX in the perifocal zone of the GBM, in comparison with the data of radiation methods. Materials and methods: 10 primary GBM, 10 samples of their perifocal zone, 10 fragments of a normal brain (control group) were studied. Before surgery, patients were prescribed oral administration of 5-aminolevulinic acid. The material was taken from the zone of red (GBM) and pink fluorescence. In all cases, histological, immunohistochemical analysis with antibodies to FoxM1 and Ki-67, and morphometry were carried out on paraffin sections. Using confocal laser scanning microscopy (CLSM), smears-prints, paraffin sections, frozen sections, native material of GBM and its perifocal growth zone were examined by the CLSM method with staining of cell nuclei with DAPI and fluorescent trackers of mitochondria, reactive oxygen species, and lysosomes. Statistical analysis of the data obtained was carried out at a confidence level of p = 0.05. Results: the histological structure of the GBM perifocal zone varied from an almost normal brain to the morphological picture of diffuse astrocytoma. In the perifocal zone of GBM, the level of proliferative activity according to Ki-67 was 5.6 [1.8; 18.0] %, which was noticeably lower (U = 3.0; significance 0.0001) of the level of proliferative activity of tumor cells - 33.1 [22.9; 37.7]%. The level of FoxM1 expression was found to be high both in the perifocal zone (U = 43.5; significance 0.631) and in the tumor zone: 96.5 [73.3; 100] % and 100 [75.3; 100]% respectively. With CLSM of native preparations of GBM tissue and perifocal zone, background red fluorescence of protoporphyrin IX (PrpIX) was observed in the cytoplasm of cells, in the lumen and walls of blood vessels. Also, colocalization of the PrpIX signal and lysosomes, mitochondria, and reactive oxygen species was found. Conclusions: a high level of FoxM1 expression was found in the cells of the GBM perifocal zone, and Ki-67 values corresponded to grade 2-4 gliomas. PrpIX was found in the mitochondria of tumor cells, their lysosomes, not only in the tumor, but also in the perifocal zone and vessels. The data obtained indicate the presence of the tumor potential of the perifocal zone of the tumor, and are the basis for recommending its surgical resection.


Key words

glioblastoma, confocal scanning laser microscopy, perifocal zone, FoxM1





(The article in PDF format. For preview need Adobe Acrobat Reader)



Open article in new window

Reference list

1. Harif F, Muzaffar K, Perveen K, Malhi S, Simjee S. Glioblastoma Multiforme: a Review of Its Epidemiology and Pathogenesis through Clinical Presentation and Treatment. Asian Pacific Journal of Cancer Prevention [Internet]. 2017 [cited 2021 Jun 25];18(1):3-9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5563115/ doi: 10.22034/APJCP.2017.18.1.3


2. Noch EK, Ramakrishna R, Magge R. Challenges in the Treatment of Glioblastoma: Multisystem Mechanisms of Therapeutic Resistance. World Neurosurgery. 2018 Aug 1;116:505-17. doi: 10.1016/j.wneu.2018.04.022


3. Alexander BM, Cloughesy TF. Adult Glioblastoma. Journal of Clinical Oncology [Internet]. 2017 Jul 20 [cited 2021 Jun 25];35(21):2402-9. Available from: https://ascopubs.org/doi/pdf/10.1200/JCO.2017.73.0119 doi: 10.1200/jco.2017.73.0119


4. Schupper AJ, Yong RL, Hadjipanayis CG. The Neurosurgeon?s Armamentarium for Gliomas: an Update on Intraoperative Technologies to Improve Extent of Resection. Journal of Clinical Medicine [Internet]. 2021 Jan 11 [cited 2021 Jun 25];10(2):236. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826675/ doi: 10.3390/jcm10020236


5. Lau D, Hervey-Jumper SL, Han SJ, Berger MS. Intraoperative Perception and Estimates on Extent of Resection during Awake Glioma surgery: Overcoming the Learning Curve. Journal of Neurosurgery [Internet]. 2018 May [cited 2021 Jun 25];128(5):1410-8. Available from: https://thejns.org/view/journals/j-neurosurg/128/5/article-p1410.xml doi: 10.3171/2017.1.jns161811


6. Zhang H, Tian M, J. Yang D. Editorial: [Hot Topic: Molecular Image-Guided Theranostics and Personalized Medicine]. Current Medical Imaging Reviews [Internet]. 2012 Oct 1 [cited 2021 Jun 26];8(4):261-1. Available from: https://www.hindawi.com/journals/bmri/2012/747416/ doi: 10.2174/157340512803759811


7. Díez Valle R, Tejada Solis S, Idoate Gastearena MA, García de Eulate R, Domínguez Echávarri P, Aristu Mendiroz J. Surgery Guided by 5-aminolevulinic Fluorescence in glioblastoma: Volumetric Analysis of Extent of Resection in single-center Experience. Journal of Neuro-Oncology. 2010 Jul 6;102(1):105-13. doi: 10.1007/s11060-010-0296-4


8. Xue J, Zhou A, Tan C, Wu Y, Lee H-T, Li W, et al. Forkhead Box M1 Is Essential for Nuclear Localization of Glioma-associated Oncogene Homolog 1 in Glioblastoma Multiforme Cells by Promoting Importin-7 Expression. The Journal of Biological Chemistry [Internet]. 2015 Jun 17 [cited 2021 Jun 26];290(30):18662-70. Available from: https://www.jbc.org/article/S0021-9258(20)42343-9/fulltext https://doi.org/10.1074/jbc.M115.662882


9. Nie S, Lou L, Wang J, Cui J, Wu W, Zhang Q, et al. Expression, Association with Clinicopathological Features and Prognostic Potential of CEP55, p Akt, FoxM1 and MMP 2 in Astrocytoma. Oncology Letters [Internet]. 2020 Jun 17 [cited 2021 Jun 26];20(2):1685-94. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377175/ doi: 10.3892/ol.2020.11742


10. Stummer W, Tonn J-C, Goetz C, Ullrich W, Stepp H, Bink A, et al. 5-Aminolevulinic Acid-derived Tumor Fluorescence. Neurosurgery [Internet]. 2013 Dec 12 [cited 2021 Jun 26];74(3):310-20. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4206350/ doi: 10.1227/neu.0000000000000267


11. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source Platform for biological-image Analysis. Nature Methods [Internet]. 2012 [cited 2021 Jun 26];9(7):676-82. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22743772 doi: 10.1038/nmeth.2019


12. Nag S, Manias JL, Stewart DJ. Pathology and New Players in the Pathogenesis of Brain Edema. Acta Neuropathologica. 2009 Apr 30;118(2):197-217. doi: 10.1007/s00401-009-0541-0


13. Engelhorn T, Savaskan NE, Schwarz MA, Kreutzer J, Meyer EP, Hahnen E, et al. Cellular Characterization of the Peritumoral Edema Zone in Malignant Brain Tumors. Cancer Science [Internet]. 2009 Oct [cited 2021 Jun 26];100(10):1856-62. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1349-7006.2009.01259.x doi: 10.1111/j.1349-7006.2009.01259.x


14. Barajas RF, Phillips JJ, Parvataneni R, Molinaro A, Essock-Burns E, Bourne G, et al. Regional Variation in Histopathologic Features of Tumor Specimens from treatment-naive Glioblastoma Correlates with Anatomic and Physiologic MR Imaging. Neuro-Oncology [Internet]. 2012 Jun 18 [cited 2021 Jun 26];14(7):942-54. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3379808/ doi: 10.1093/neuonc/nos128


15. Lasocki A, Gaillard F. Non-Contrast-Enhancing Tumor: a New Frontier in Glioblastoma Research. American Journal of Neuroradiology [Internet]. 2019 Apr 4 [cited 2020 Feb 8];40(5):758-65. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7053910/ doi: 10.3174/ajnr.a6025


16. Proescholdt MA, Macher C, Woertgen C, Brawanski A. Level of Evidence in the Literature concerning Brain Tumor Resection. Clinical Neurology and Neurosurgery. 2005 Feb;107(2):95-8. doi: 10.1016/j.clineuro.2004.02.025


17. Stummer W, van den Bent MJ, Westphal M. Cytoreductive Surgery of Glioblastoma as the Key to Successful Adjuvant therapies: New Arguments in an Old Discussion. Acta Neurochirurgica [Internet]. 2011 Jun 1 [cited 2021 Apr 17];153(6):1211-8. Available from: https://pubmed.ncbi.nlm.nih.gov/21479583/ doi: 10.1007/s00701-011-1001-x


18. Hung AL, Garzon-Muvdi T, Lim M. Biomarkers and Immunotherapeutic Targets in Glioblastoma. World Neurosurgery. 2017 Jun;102:494-506. doi: 10.1016/j.wneu.2017.03.011


19. Wang Z, Zhang S, Siu T, Huang S. Glioblastoma Multiforme Formation and EMT: Role of FoxM1 Transcription Factor. Current Pharmaceutical Design [Internet]. 2015 Feb 3 [cited 2021 Jun 26];21(10):1268-71. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380124/ doi: 10.2174/1381612821666141211115949


20. Uddin S, Hussain A, Ahmed M, Siddiqui K, Al-Dayel F, Bavi P, et al. Overexpression of FoxM1 Offers a Promising Therapeutic Target in Diffuse Large B-cell Lymphoma. Haematologica [Internet]. 2012 Jun [cited 2021 Jun 26];97(7):1092-100. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3396683/ doi: 10.3324/haematol.2011.053421


21. Polyak K. The p27Kip1 Tumor Suppressor gene: Still a Suspect or Proven guilty? Cancer Cell [Internet]. 2006 Nov [cited 2021 Jun 28];10(5):352-4. Available from: https://www.cell.com/cancer-cell/comments/S1535-6108(06)00322-9?code=cell-site doi: 10.1016/j.ccr.2006.10.015


22. Liu M, Dai B, Kang S-H, Ban K, Huang F-J, Lang FF, et al. FoxM1B Is Overexpressed in Human Glioblastomas and Critically Regulates the Tumorigenicity of Glioma Cells. Cancer Research [Internet]. 2006 Apr 1 [cited 2021 Jun 26];66(7):3593-602. Available from: http://cancerres.aacrjournals.org/content/66/7/3593 doi: 10.1158/0008-5472.can-05-2912


23. van den Boom J, Wolter M, Kuick R, Misek DE, Youkilis AS, Wechsler DS, et al. Characterization of Gene Expression Profiles Associated with Glioma Progression Using Oligonucleotide-Based Microarray Analysis and Real-Time Reverse Transcription-Polymerase Chain Reaction. The American Journal of Pathology [Internet]. 2003 Sep [cited 2021 Jun 28];163(3):1033-43. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1868272/ doi: 10.1016/s0002-9440(10)63463-3


24. Joshi K, Banasavadi-Siddegowda Y, Mo X, Kim S-H, Mao P, Kig C, et al. MELK-Dependent FOXM1 Phosphorylation Is Essential for Proliferation of Glioma Stem Cells. Stem Cells [Internet]. 2013 May 22 [cited 2021 Jun 28];31(6):1051-63. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3744761/ doi: 10.1002/stem.1358


25. Korver W, Roose J, Clevers H. The winged-helix Transcription Factor Trident Is Expressed in Cycling Cells. Nucleic Acids Research [Internet]. 1997 May 1 [cited 2021 Jun 28];25(9):1715-9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC146663/ doi: 10.1093/nar/25.9.1715


26. Ye H, Kelly TF, Samadani U, Lim L, Rubio S, Overdier DG, et al. Hepatocyte Nuclear Factor 3/fork Head Homolog 11 Is Expressed in Proliferating Epithelial and Mesenchymal Cells of Embryonic and Adult tissues. Molecular and Cellular Biology [Internet]. 1997 Mar [cited 2019 Sep 25];17(3):1626-41. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC231888/ doi: 10.1128/mcb.17.3.1626


27. Gartel AL. A New Target for Proteasome inhibitors: FoxM1. Expert Opinion on Investigational Drugs [Internet]. 2010 Jan 15 [cited 2021 Jun 28];19(2):235-42. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3532816/ doi: 10.1517/13543780903563364


28. Gartel AL. Thiostrepton, Proteasome Inhibitors and FOXM1. Cell Cycle [Internet]. 2011 Dec 15 [cited 2021 Jun 28];10(24):4341-2. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272263/ doi: 10.4161/cc.10.24.18544


29. Nakano I, Joshi K, Visnyei K, Hu B, Watanabe M, Lam D, et al. Siomycin a Targets Brain Tumor Stem Cells Partially through a MELK-mediated Pathway. Neuro-Oncology [Internet]. 2011 May 9 [cited 2021 Jun 28];13(6):622-34. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3107094/ doi: 10.1093/neuonc/nor023


30. Walter S, Susanne S, Simon W, Herbert S, Clemens F, Claudia G, et al. Intraoperative Detection of Malignant Gliomas by 5-Aminolevulinic Acid-induced Porphyrin Fluorescence. Neurosurgery. 1998 Mar 1;42(3):518-26. doi: 10.1097/00006123-199803000-00017


31. Stummer W, Stocker S, Novotny A, Heimann A, Sauer O, Kempski O, et al. In Vitro and in Vivo Porphyrin Accumulation by C6 Glioma Cells after Exposure to 5-aminolevulinic Acid. Journal of Photochemistry and Photobiology B: Biology. 1998 Sep;45(2-3):160-9. doi: 10.1016/s1011-1344(98)00176-6


32. Valdes PA, Kim A, Brantsch M, Niu C, Moses ZB, Tosteson TD, et al. δ -aminolevulinic acid-induced Protoporphyrin IX Concentration Correlates with Histopathologic Markers of Malignancy in Human gliomas: the Need for Quantitative fluorescence-guided Resection to Identify Regions of Increasing Malignancy. Neuro-Oncology [Internet]. 2011 Jul 28 [cited 2021 Jun 28];13(8):846-56. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3145475/ doi: 10.1093/neuonc/nor086


33. ValdésPA, Kim A, Leblond F, Conde OM, Harris BT, Paulsen KD, et al. Combined Fluorescence and Reflectance Spectroscopy for in Vivo Quantification of Cancer Biomarkers in low- and high-grade Glioma Surgery. Journal of Biomedical Optics [Internet]. 2011 [cited 2021 Jun 28];16(11):116007. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3221714/ doi: 10.1117/1.3646916


34. Widhalm G, Wolfsberger S, Minchev G, Woehrer A, Krssak M, Czech T, et al. 5-Aminolevulinic Acid Is a Promising Marker for Detection of Anaplastic Foci in Diffusely Infiltrating Gliomas with Nonsignificant Contrast Enhancement. Cancer [Internet]. 2010 Mar 15 [cited 2021 Jun 28];116(6):1545-52. Available from: https://acsjournals.onlinelibrary.wiley.com/doi/full/10.1002/cncr.24903 doi: 10.1002/cncr.24903


35. Ennis SR, Novotny A, Xiang J, Shakui P, Masada T, Stummer W, et al. Transport of 5-aminolevulinic Acid between Blood and Brain. Brain Research. 2003 Jan;959(2):226-34. doi: 10.1016/s0006-8993(02)03749-6


36. Stummer W, Götz C, Hassan A, Heimann A, Kempski O. Kinetics of Photofrin II in Perifocal Brain Edema. Neurosurgery. 1993 Dec;33(6):1075-82. doi: 10.1227/00006123-199312000-00016


37. Iinuma S, Farshi S, Ortel B, Hasan T. A Mechanistic Study of Cellular Photodestruction with 5-aminolaevulinic acid-induced Porphyrin. British Journal of Cancer [Internet]. 1994 Jul 1 [cited 2021 Jun 28];70(1):21-8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2033301/ doi: 10.1038/bjc.1994.244


38. Terr L, Weiner LP. An Autoradiographic Study of δ-aminolevulinic Acid Uptake by Mouse Brain. Experimental Neurology. 1983 Feb;79(2):564-8. doi: 10.1016/0014-4886(83)90234-0


39. Stummer W, Stepp H, Möller G, Ehrhardt A, Leonhard M, Reulen HJ. Technical Principles for Protoporphyrin-IX-Fluorescence Guided Microsurgical Resection of Malignant Glioma Tissue. Acta Neurochirurgica. 1998 Oct 22;140(10):995-1000. doi: 10.1007/s007010050206


40. Webber J, Kessel D, Fromm D. Plasma Levels of Protoporphyrin IX in Humans after Oral Administration of 5-aminolevulinic Acid. Journal of Photochemistry and Photobiology B: Biology. 1997 Jan;37(1-2):151-3. doi: 10.1016/s1011-1344(96)07348-4


41. Ocheltree SM, Shen H, Hu Y, Xiang J, Keep RF, Smith DE. Role of PEPT2 in the Choroid Plexus Uptake of Glycylsarcosine and 5-Aminolevulinic Acid: Studies in Wild-Type and Null Mice. Pharmaceutical Research [Internet]. 2004 Sep [cited 2021 Jun 28];21(9):1680-5. Available from: https://deepblue.lib.umich.edu/handle/2027.42/41506 doi: 10.1023/b:pham.0000041465.89254.05


42. Valdés PA, Moses ZB, Kim A, Belden CJ, Wilson BC, Paulsen KD, et al. Gadolinium- and 5-Aminolevulinic Acid-Induced Protoporphyrin IX Levels in Human Gliomas: an Ex Vivo Quantitative Study to Correlate Protoporphyrin IX Levels and Blood-Brain Barrier Breakdown. Journal of Neuropathology & Experimental Neurology [Internet]. 2012 Sep [cited 2021 Jun 28];71(9):806-13. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718468/ doi: 10.1097/nen.0b013e31826775a1


43. Montcel B, Mahieu-Williame L, Armoiry X, Meyronet D, Guyotat J. Two-peaked 5-ALA-induced PpIX Fluorescence Emission Spectrum Distinguishes Glioblastomas from Low Grade Gliomas and Infiltrative Component of Glioblastomas. Biomedical Optics Express [Internet]. 2013 Mar 13 [cited 2021 Jun 28];4(4):548. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617717/ doi: 10.1364/boe.4.000548


44. Collaud S, Juzeniene A, Moan J, Lange N. On the Selectivity of 5-Aminolevulinic Acid-Induced Protoporphyrin IX Formation. Current Medicinal Chemistry-Anti-Cancer Agents. 2004 May 1;4(3):301-16. doi: 10.2174/1568011043352984


45. Blake E, Curnow A. The Hydroxypyridinone Iron Chelator CP94 Can Enhance PpIX-induced PDT of Cultured Human Glioma Cells. Photochemistry and Photobiology [Internet]. 2010 Sep [cited 2021 Jun 28];86(5):1154-60. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-1097.2010.00770.x doi: 10.1111/j.1751-1097.2010.00770.x


46. Valdés PA, Samkoe K, O?Hara JA, Roberts DW, Paulsen KD, Pogue BW. Deferoxamine Iron Chelation Increases δ-Aminolevulinic Acid Induced Protoporphyrin IX in Xenograft Glioma Model. Photochemistry and Photobiology [Internet]. 2010 Mar [cited 2021 Jun 28];86(2):471-5. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875336/ doi: 10.1111/j.1751-1097.2009.00664.x


47. Georgakoudi I, Keng PC, Foster TH. Hypoxia Significantly Reduces Aminolaevulinic acid-induced Protoporphyrin IX Synthesis in EMT6 Cells. British Journal of Cancer [Internet]. 1999 Feb 26 [cited 2021 Jun 28];79(9-10):1372-7. Available from: https://www.nature.com/articles/6690220 doi: 10.1038/sj.bjc.6690220


48. Wyld L, Reed M, Brown N. The Influence of Hypoxia and pH on Aminolaevulinic acid-induced Photodynamic Therapy in Bladder Cancer Cells in Vitro. British Journal of Cancer [Internet]. 1998 May [cited 2021 Jun 28];77(10):1621-7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2150064/ doi: 10.1038/bjc.1998.265


49. Berezovsky AD, Poisson LM, Cherba D, Webb CP, Transou AD, Lemke NW, et al. Sox2 Promotes Malignancy in Glioblastoma by Regulating Plasticity and Astrocytic Differentiation. Neoplasia [Internet]. 2014 Mar 1 [cited 2021 Jun 28];16(3):193-206.e25. Available from: https://www.sciencedirect.com/science/article/pii/S1476558614000177 doi:


10.1016/j.neo.2014.03.006


50. Favaro R, Appolloni I, Pellegatta S, Sanga AB, Pagella P, Gambini E, et al. Sox2 Is Required to Maintain Cancer Stem Cells in a Mouse Model of High-Grade Oligodendroglioma. Cancer Research [Internet]. 2014 Mar 5 [cited 2021 Jun 28];74(6):1833-44. Available from: https://cancerres.aacrjournals.org/content/74/6/1833.long doi: 10.1158/0008-5472.can-13-1942


51. Gill BJ, Pisapia DJ, Malone HR, Goldstein H, Lei L, Sonabend A, et al. MRI-localized Biopsies Reveal subtype-specific Differences in Molecular and Cellular Composition at the Margins of Glioblastoma. Proceedings of the National Academy of Sciences [Internet]. 2014 Aug 11 [cited 2021 Jun 28];111(34):12550-5. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151734/ doi: 10.1073/pnas.1405839111


52. Hide T, Komohara Y, Miyasato Y, Nakamura H, Makino K, Takeya M, et al. Oligodendrocyte Progenitor Cells and Macrophages/Microglia Produce Glioma Stem Cell Niches at the Tumor Border. EBioMedicine [Internet]. 2018 Apr [cited 2021 Jun 28];30:94-104. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5952226/ doi: 10.1016/j.ebiom.2018.02.024


53. Venkatesh HS, Morishita W, Geraghty AC, Silverbush D, Gillespie SM, Arzt M, et al. Electrical and Synaptic Integration of Glioma into Neural Circuits. Nature [Internet]. 2019 Sep 1 [cited 2020 Aug 11];573(7775):539-45. Available from: https://www.nature.com/articles/s41586-019-1563-y doi: 10.1038/s41586-019-1563-y


54. Verburg N, de Witt Hamer PC. State-of-the-art Imaging for Glioma Surgery. Neurosurgical Review [Internet]. 2020 Jun 30 [cited 2021 Jun 28];44(3):1331-43. Available from: https://link.springer.com/article/10.1007/s10143-020-01337-9 doi: 10.1007/s10143-020-01337-9


55. Lahina U, Gylyaev D, Krasnoshlik P, Mitrofanova L, Petrov A, Belov I, et al. Taktika Hiryrgicheskogo Lecheniya Glioblastom s Razlichnimi MR-Harakteristikami. Saratovskii naychno-medicinskii jyrnal [Internet]. 2020 Nov 20 [cited 2021 Jun 28];16(4):912-6. Available from: https://ssmj.ru/2020/4/912





Свидетельство о регистрации сетевого электронного научного издания N 077 от 29.11.2006
Журнал основан 16 ноября 2000г.
Выдано Министерством РФ по делам печати, телерадиовещания и средств массовых коммуникаций
(c) Перепечатка материалов сайта Medline.Ru возможна только с письменного разрешения редакции

Размещение рекламы

Rambler's Top100