Медико-биологический
информационный портал
для специалистов
 
БИОМЕДИЦИНСКИЙ ЖУРНАЛ Medline.ru

СОДЕРЖАНИЕ ЖУРНАЛА:
Физико-химическая биология

Клиническая медицина

Профилактическая медицина

Медико-биологические науки


АРХИВ:

Фундаментальные исследования

Организация здравохраниения

История медицины и биологии



Последние публикации

Поиск публикаций

Articles

Архив :  2000 г.  2001 г.  2002 г. 
               2003 г.  2004 г.  2005 г. 
               2006 г.  2007 г.  2008 г. 
               2009 г.  2010 г.  2011 г. 
               2012 г.  2013 г.  2014 г. 
               2015 г.  2016 г.  2017 г. 
               2018 г.  2019 г.  2020 г.  2021 г. 

Редакционная информация:
        Опубликовать статью
        Наша статистика


 РЕДАКЦИЯ:
Главный редактор

Заместители главного редактора

Члены редколлегии
Специализированные редколлегии


 УЧРЕДИТЕЛИ:
Федеральное государственное бюджетное учреждение науки
"Институт токсикологии Федерального медико-биологического агентства"
(ФГБУН ИТ ФМБА России)

Институт теоретической и экспериментальной биофизики Российской академии наук.

ООО "ИЦ КОМКОН".




Адрес редакции и реквизиты

199406, Санкт-Петербург, ул.Гаванская, д. 49, корп.2

ISSN 1999-6314

Российская поисковая система
Искать: 


«
Vol. 21, Art. 79 (pp. 1005-1024)    |    2020       
»

Methods for glioblastoma's visualization. myths and reality
The Almazov National Medical Research Centre, St. Petersburg, Russia
Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia



Brief summary

Glioblastoma is a tumor of the central nervous system from the subgroup of gliomas; it belongs to grade 4 according to the WHO classification. Despite a huge amount of scientific research over the past 20 years, it has not been possible to achieve a significant increase in the life expectancy of patients after the diagnosis of glioblastoma. One of the components of the complex treatment of glioblastoma is its surgical resection. However, due to its extensive infiltrative growth, even experienced neurosurgeons cannot clearly visualize the border between the tumor and healthy tissue. In addition, the question of removing the perifocal growth zone of glioblastoma, which is the source of its recurrence, remains behind the scenes. The review was compiled in order to systematize the data available in the Russian and English-language literature on the methods of pre- and intraoperative morphological visualization of glioblastoma and the zone of its perifocal growth.


Key words

glioblastoma, perifocal zone, positron emission tomography, magnetic resonance imaging, neuronavigation with 5-aminolevulinic acid





(The article in PDF format. For preview need Adobe Acrobat Reader)



Open article in new window

Reference list

1. Tamimi A. F., Juweid M. Epidemiology and outcome of glioblastoma //Exon Publications. - 2017. - S. 143-153.


2. Malmström A. et al. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial //The lancet oncology. - 2012. - T. 13. - N. 9. - S. 916-926.


3. Kolotov K. A. Dostovernie kriterii prognoza vijivaniya bolnih cerebralnoi gliomoi posle kombinirovannoi terapii //Permskii medicinskii jyrnal. - 2012. - T. 29. - N. 2.


4. Stupp R. et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial //The lancet oncology. - 2009. - T. 10. - N. 5. - S. 459-466.


5. Potapov A. A. i dr. Prakticheskie rekomendacii po lekarstvennomy lecheniu pervichnih opyholei centralnoi nervnoi sistemi //Acta Neuropathol. - 2016. - T. 131. - N. 6. - S. 803-20.


6. Saconn P. A. et al. Use of 3.0-T MRI for stereotactic radiosurgery planning for treatment of brain metastases: a single-institution retrospective review //International Journal of Radiation Oncology* Biology* Physics. - 2010. - T. 78. - N. 4. - S. 1142-1146.


7. Ellingson B. M. et al. Consensus recommendations for a standardized brain tumor imaging protocol in clinical trials //Neuro-oncology. - 2015. - T. 17. - N. 9. - S. 1188-1198.


8. Bydder G., Young I. MR Imaging: Clinical Use of the Inversion Recovery Sequence //Journal of Computer Assisted Tomography. - 1985. - T. 9. - N. 4. - S. 659-675.


9. Skvorcova T. U. i dr. Sopostavlenie diffyzionno-vzveshennoi MRT i PET/KT s [11S] metioninom y bolnih s glialnimi opyholyami golovnogo mozga //Lychevaya diagnostika i terapiya. - 2019. - N. 3. - S. 42-52.


10. Scott J. N. et al. How often are nonenhancing supratentorial gliomas malignant? A population study //Neurology. - 2002. - T. 59. - N. 6. - S. 947-949.


11. Aghi M. et al. Magnetic resonance imaging characteristics predict epidermal growth factor receptor amplification status in glioblastoma //Clinical Cancer Research. - 2005. - T. 11. - N. 24. - S. 8600-8605.


12. Nag S., Manias J. L., Stewart D. J. Pathology and new players in the pathogenesis of brain edema //Acta neuropathologica. - 2009. - T. 118. - N. 2. - S. 197-217.


13. Barajas Jr R. F. et al. Regional variation in histopathologic features of tumor specimens from treatment-naive glioblastoma correlates with anatomic and physiologic MR Imaging //Neuro-oncology. - 2012. - T. 14. - N. 7. - S. 942-954.


14. Lemercier P. et al. Gradient of apparent diffusion coefficient values in peritumoral edema helps in differentiation of glioblastoma from solitary metastatic lesions //American Journal of Roentgenology. - 2014. - T. 203. - N. 1. - S. 163-169.


15. Essig M. et al. Perfusion MRI: the five most frequently asked technical questions //American Journal of Roentgenology. - 2013. - T. 200. - N. 1. - S. 24-34.


16. Lewin J. S. et al. Intraoperative MRI with a Rotating, Tiltable Surgical Table: A Time-Use Study and Clinical Results in 122 Patients //American Journal of Roentgenology. - 2007. - T. 189. - N. 5. - S. 1096-1103.


17. Albert N. L. et al. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas //Neuro-oncology. - 2016. - T. 18. - N. 9. - S. 1199-1208.


18. Langen K. J. et al. Advances in neuro-oncology imaging //Nature Reviews Neurology. - 2017. - T. 13. - N. 5. - S. 279-289.


19. Langen K. J., Watts C. Amino acid PET for brain tumours ready for the clinic //Nature Reviews Neurology. - 2016. - T. 12. - N. 7. - S. 375-376.


20. Law I. et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18 F] FDG: version 1.0 //European journal of nuclear medicine and molecular imaging. - 2019. - T. 46. - N. 3. - S. 540-557.


21. Okada H. et al. Immunotherapy response assessment in neuro-oncology: a report of the RANO working group //The Lancet Oncology. - 2015. - T. 16. - N. 15. - S. e534-e542.


22. Albert N. L. et al. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas //Neuro-oncology. - 2016. - T. 18. - N. 9. - S. 1199-1208.


23. Colavolpe C. et al. FDG-PET predicts survival in recurrent high-grade gliomas treated with bevacizumab and irinotecan //Neuro-oncology. - 2012. - T. 14. - N. 5. - S. 649-657.


24. De Witte O. et al. FDG-PET as a prognostic factor in high-grade astrocytoma //Journal of neuro-oncology. - 2000. - T. 49. - N. 2. - S. 157-163.


25. Dunet V. et al. Performance of 18F-FET versus 18F-FDG-PET for the diagnosis and grading of brain tumors: systematic review and meta-analysis //Neuro-oncology. - 2015. - T. 18. - N. 3. - S. 426-434.


26. Mertens K. et al. Validation of 18F-FDG PET at conventional and delayed intervals for the discrimination of high-grade from low-grade gliomas: a stereotactic PET and MRI study //Clinical nuclear medicine. - 2013. - T. 38. - N. 7. - S. 495-500.


27. Law I. et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18 F] FDG: version 1.0 //European journal of nuclear medicine and molecular imaging. - 2019. - T. 46. - N. 3. - S. 540-557.


28. Dethy S. et al. PET findings in a brain abscess associated with a silent atrial septal defect //Clinical neurology and neurosurgery. - 1995. - T. 97. - N. 4. - S. 349-353.


29. Floeth F. W. et al. 18F-FET PET differentiation of ring-enhancing brain lesions //Journal of Nuclear Medicine. - 2006. - T. 47. - N. 5. - S. 776-782.


30. Pichler R. et al. Is there a place for FET PET in the initial evaluation of brain lesions with unknown significance? //European journal of nuclear medicine and molecular imaging. - 2010. - T. 37. - N. 8. - S. 1521-1528.


31. Ogawa T. et al. Carbon-11-methionine PET evaluation of intracerebral hematoma: distinguishing neoplastic from non-neoplastic hematoma //Journal of Nuclear Medicine. - 1995. - T. 36. - N. 12. - S. 2175-2179.


32. Dethy S. et al. Carbon-11-methionine and fluorine-18-FDG PET study in brain hematoma //Journal of nuclear medicine: official publication, Society of Nuclear Medicine. - 1994. - T. 35. - N. 7. - S. 1162.


33. Salber D. et al. Comparison of O-(2-18F-fluoroethyl)-L-tyrosine and L-3H-methionine uptake in cerebral hematomas //Journal of Nuclear Medicine. - 2010. - T. 51. - N. 5. - S. 790-797.


34. Zazulia A. R., Videen T. O., Powers W. J. Transient focal increase in perihematomal glucose metabolism after acute human intracerebral hemorrhage //Stroke. - 2009. - T. 40. - N. 5. - S. 1638-1643.


35. Jacobs A. Amino acid uptake in ischemically compromised brain tissue //Stroke. - 1995. - T. 26. - ?. 10. - S. 1859-1866.


36. Salber D. et al. Differential uptake of [18F] FET and [3H] l-methionine in focal cortical ischemia //Nuclear medicine and biology. - 2006. - T. 33. - N. 8. - S. 1029-1035.


37. Morana G. et al. 18F-DOPA Uptake of Developmental Venous Anomalies in Children With Brain Tumors //Clinical Nuclear Medicine. - 2016. - T. 41. - N. 7. - S. E351-2.


38. Schiepers C. et al. Positron emission tomography, magnetic resonance imaging and proton NMR spectroscopy of white matter in multiple sclerosis //Multiple Sclerosis Journal. - 1997. - T. 3. - N. 1. - S. 8-17.


39. Lopci E., Bello L., Chiti A. 11C-Methionine uptake in secondary brain epilepsy //Revista espanola de medicina nuclear e imagen molecular. - 2014. - T. 33. - N. 4. - S. 234-236.


40. Raab O. Uber die Wirkung fluorescirender Stoffe auf Infusorien //Z. biol. - 1900. - T. 39. - S. 524-546.


41. von Tappeiner H., Jodlbauer A. Die sensibilisierende Wirkung fluorescierender Substanzen: gesammelte Untersuchungen über die photodynamische Erscheinung. - Vogel, 1907.


42. Policard A., Leulier A. Caracterisation de l?haemato-porphyrine et de l?urobiline urinaire par la lumiere de wood and etude sur les aspects offerts par des tumour experimentales examinees a la lumiere de wood //CR Soc. Biol. - 1924. - T. 91. - S. 1422.


43. Moore G. E., Peyton W. T. The clinical use of sodium fluorescein and radioactive diiodofluorescein in the localization of tumors of the central nervous system //Minnesota medicine. - 1948. - T. 31. - N. 10. - S. 1073.


44. Malik Z., Djaldetti M. 5-aminolevulinic acid stimulation of porphyrin and hemoglobin synthesis by uninduced friend erythroleukemic cells //Cell Differentiation. - 1979. - T. 8. - N. 3. - S. 223-233.


45. Hebeda K. M. et al. 5-Aminolevulinic acid induced endogenous porphyrin fluorescence in 9L and C6 brain tumours and in the normal rat brain //Acta neurochirurgica. - 1998. - T. 140. - N. 5. - S. 503-513.


46. McGillion F. B., Thompson G. G., Goldberg A. Tissue uptake of δ-aminolaevulinic acid //Biochemical Pharmacology. - 1975. - T. 24. - N. 2. - S. 299-301.


47. Colditz M. J., van Leyen K., Jeffree R. L. Aminolevulinic acid (ALA)-protoporphyrin IX fluorescence guided tumour resection. Part 2: Theoretical, biochemical and practical aspects //Journal of Clinical Neuroscience. - 2012. - T. 19. - N. 12. - S. 1611-1616., Rimington C. Porphyrin and haem biosynthesis and its control //Acta Medica Scandinavica. - 1966. - T. 179. - N. S445. - S. 11-24.


48. Johansson A. et al. 5‐Aminolevulinic acid‐induced protoporphyrin IX levels in tissue of human malignant brain tumors //Photochemistry and photobiology. - 2010. - T. 86. - N. 6. - S. 1373-1378.


49. Divaris D. X., Kennedy J. C., Pottier R. H. Phototoxic damage to sebaceous glands and hair follicles of mice after systemic administration of 5-aminolevulinic acid correlates with localized protoporphyrin IX fluorescence //The American journal of pathology. - 1990. - T. 136. - N. 4. - S. 891.


50. Johansson A. et al. 5‐Aminolevulinic acid‐induced protoporphyrin IX levels in tissue of human malignant brain tumors //Photochemistry and photobiology. - 2010. - T. 86. - N. 6. - S. 1373-1378., Hinnen P. et al. Porphyrin biosynthesis in human Barrett's oesophagus and adenocarcinoma after ingestion of 5-aminolaevulinic acid //British journal of cancer. - 2000. - T. 83. - N. 4. - S. 539-543.


51. Walter S. et al. Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence //Neurosurgery. - 1998. - T. 42. - N. 3. - S. 518-526.


52. Stummer W. et al. In vitro and in vivo porphyrin accumulation by C6 glioma cells after exposure to 5-aminolevulinic acid //Journal of Photochemistry and Photobiology B: Biology. - 1998. - T. 45. - N. 2-3. - S. 160-169.


53. Madsen S. J., Hirschberg H. Site‐specific opening of the blood‐brain barrier //Journal of biophotonics. - 2010. - T. 3. - N. 5‐6. - S. 356-367.


54. Semyachkina-Glushkovskaya O. et al. Photodynamic opening of blood-brain barrier //Biomedical optics express. - 2017. - T. 8. - N. 11. - S. 5040-5048.


55. Krammer B., Plaetzer K. ALA and its clinical impact, from bench to bedside //Photochemical & Photobiological Sciences. - 2008. - T. 7. - N. 3. - S. 283-286.


56. Grant W. E. et al. Photodynamic therapy of oral cancer: photosensitisation with systemic aminolaevulinic acid //The Lancet. - 1993. - T. 342. - N. 8864. - S. 147-148.


57. Kriegmair M. et al. Early clinical experience with 5‐aminolevulinic acid for the photodynamic therapy of superficial bladder cancer //British journal of urology. - 1996. - T. 77. - N. 5. - S. 667-671.


58. Leunig A. et al. Fluorescence imaging and spectroscopy of 5-aminolevulinic acid induced protoporphyrin IX for the dectection of neoplastic lesions in the oral cavity //The American journal of surgery. - 1996. - T. 172. - N. 6. - S. 674-677.


59. Valdés P. A. et al. δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy //Neuro-oncology. - 2011. - T. 13. - N. 8. - S. 846-856.


60. Valdes P. A. et al. Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low-and high-grade glioma surgery //Journal of biomedical optics. - 2011. - T. 16. - N. 11. - S. 116007.


61. Widhalm G. et al. 5‐Aminolevulinic acid is a promising marker for detection of anaplastic foci in diffusely infiltrating gliomas with nonsignificant contrast enhancement //Cancer: Interdisciplinary International Journal of the American Cancer Society. - 2010. - T. 116. -N. 6. - S. 1545-1552.


62. Ennis S. R. et al. Transport of 5-aminolevulinic acid between blood and brain //Brain research. - 2003. - T. 959. -N. 2. - S. 226-234.


63. Stummer W. et al. Kinetics of Photofrin II in perifocal brain edema //Neurosurgery. - 1993. - T. 33. - N. 6. - S. 1075-1082.


64. Iinuma S. et al. A mechanistic study of cellular photodestruction with 5-aminolaevulinic acid-induced porphyrin //British Journal of cancer. - 1994. - T. 70. - N. 1. - S. 21-28.


65. Stummer W. et al. Technical principles for protoporphyrin-IX-fluorescence guided microsurgical resection of malignant glioma tissue //Acta neurochirurgica. - 1998. - T. 140. - N. 10. - S. 995-1000.


66. Webber J., Kessel D., Fromm D. Plasma levels of protoporphyrin IX in humans after oral administration of 5-aminolevulinic acid //Journal of Photochemistry and Photobiology B: Biology. - 1997. - T. 37. - N. 1-2. - S. 151-153.


67. Novotny A., Stummer W. 5-Aminolevulinic acid and the blood-brain barrier-A review //Medical Laser Application. - 2003. - T. 18. - N. 1. - S. 36-40.


68. Terr L., Weiner L. P. An autoradiographic study of δ-aminolevulinic acid uptake by mouse brain //Experimental Neurology. - 1983. - T. 79. - N. 2. - S. 564-568.


69. Ocheltree S. M. et al. Role of PEPT2 in the choroid plexus uptake of glycylsarcosine and 5-aminolevulinic acid: studies in wild-type and null mice //Pharmaceutical research. - 2004. - T. 21. - N. 9. - S. 1680-1685.


70. Valdés P. A. et al. Gadolinium-and 5-aminolevulinic acid-induced protoporphyrin IX levels in human gliomas: an ex vivo quantitative study to correlate protoporphyrin IX levels and blood-brain barrier breakdown //Journal of Neuropathology & Experimental Neurology. - 2012. - T. 71. - N. 9. - S. 806-813.


71. Collaud S. et al. On the selectivity of 5-aminolevulinic acid-induced protoporphyrin IX formation //Current Medicinal Chemistry-Anti-Cancer Agents. - 2004. - T. 4. - N. 3. - S. 301-316.


72. Blake E., Curnow A. The hydroxypyridinone iron chelator CP94 can enhance PpIX‐induced PDT of cultured human glioma cells //Photochemistry and photobiology. - 2010. - T. 86. - N. 5. - S. 1154-1160.


73. Valdés P. A. et al. Deferoxamine iron chelation increases δ‐aminolevulinic acid induced protoporphyrin IX in xenograft glioma model //Photochemistry and photobiology. - 2010. - T. 86. - N. 2. - S. 471-475.


74. Sroka R. et al. Pharmacokinetics of 5-aminolevulinic-acid-induced porphyrins in tumour-bearing mice //Journal of Photochemistry and Photobiology B: Biology. - 1996. - T. 34. - N. 1. - S. 13-19.


75. Georgakoudi I., Keng P. C., Foster T. H. Hypoxia significantly reduces aminolaevulinic acid-induced protoporphyrin IX synthesis in EMT6 cells //British journal of cancer. - 1999. - T. 79. - N. 9. - S. 1372-1377.


76. Wyld L., Reed M. W. R., Brown N. J. The influence of hypoxia and pH on aminolaevulinic acid-induced photodynamic therapy in bladder cancer cells in vitro //British journal of cancer. - 1998. - T. 77. - N. 10. - S. 1621-1627.


77. Wyld L., Reed M. W. R., Brown N. J. The influence of hypoxia and pH on aminolaevulinic acid-induced photodynamic therapy in bladder cancer cells in vitro //British journal of cancer. - 1998. - T. 77. - N. 10. - S. 1621-1627.


78. Montcel B. et al. Two-peaked 5-ALA-induced PpIX fluorescence emission spectrum distinguishes glioblastomas from low grade gliomas and infiltrative component of glioblastomas //Biomedical optics express. - 2013. - T. 4. - N. 4. - S. 548-558.


79. Valdés P. A. et al. Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker //Journal of neurosurgery. - 2011. - T. 115. - N. 1. - S. 11-17.


80. Valle R. D. et al. Surgery guided by 5-aminolevulinic fluorescence in glioblastoma: volumetric analysis of extent of resection in single-center experience //Journal of neuro-oncology. - 2011. - T. 102. - N. 1. - S. 105-113.


81. Valdes P. A. et al. Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low-and high-grade glioma surgery //Journal of biomedical optics. - 2011. - T. 16. - N. 11. - S. 116007.


82. Hefti M. et al. 5-aminolevulinic acid induced protoporphyrin IX fluorescence in high-grade glioma surgery //Swiss medical weekly. - 2008. - T. 138. - N. 1112.


83. Utsuki S. et al. Histological examination of false positive tissue resection using 5-aminolevulinic acid-induced fluorescence guidance //Neurologia medico-chirurgica. - 2007. - T. 47. - N. 5. - S. 210-214.





Свидетельство о регистрации сетевого электронного научного издания N 077 от 29.11.2006
Журнал основан 16 ноября 2000г.
Выдано Министерством РФ по делам печати, телерадиовещания и средств массовых коммуникаций
(c) Перепечатка материалов сайта Medline.Ru возможна только с письменного разрешения редакции

Размещение рекламы

Rambler's Top100