Медико-биологический
информационный портал
для специалистов
 
Medline.ru

СОДЕРЖАНИЕ ЖУРНАЛА:
Физико-химическая биология

Клиническая медицина

Профилактическая медицина

Медико-биологические науки


АРХИВ:

Фундаментальные исследования

Организация здравохраниения

История медицины и биологии



Последние публикации

Поиск публикаций

Articles

Архив :  2000 г.  2001 г.  2002 г. 
               2003 г.  2004 г.  2005 г. 
               2006 г.  2007 г.  2008 г. 
               2009 г.  2010 г.  2011 г. 
               2012 г.  2013 г.  2014 г. 
               2015 г.  2016 г.  2017 г. 
               2018 г.  2019 г.  2020 г.  2021 г.  2022 г.  2023 г. 

Редакционная информация:
        Опубликовать статью
        Наша статистика


 РЕДАКЦИЯ:
Главный редактор

Заместители главного редактора

Члены редколлегии
Специализированные редколлегии


 УЧРЕДИТЕЛИ:
Институт теоретической и экспериментальной биофизики Российской академии наук.

ООО "ИЦ КОМКОН".




Адрес редакции и реквизиты

199406, Санкт-Петербург, ул.Гаванская, д. 49, корп.2

ISSN 1999-6314

Российская поисковая система
Искать: 


«
Vol. 19, Art. 21 (pp. 281-306)    |    2018       
»

Morphological study of telocytes in different parts of the normal adult human brain
Mitrofanova LB¹, Khazratov AO¹, Krasnoshlyk PV¹, Vorobyova OM¹, Gorshkov AN¹², Gulyaev DA¹

1 - Almazov National Medical Research Centre, St. Petersburg, 197143
2 - Smorodintsev Research Institute of Influenza, St. Petersburg, 197376



Brief summary

Introduction: Telocytes have anti-inflammatory, regenerative and pacemaker properties, form a 3D network in almost all organs and coordinate intercellular relationships through multiple different contacts and microvesicles. These cells were found in the dura mater and choroid plexus of the cerebral ventricles. Objective: morphological study of telocytes in various parts of the normal brain. Materials and methods: Different parts of the normal brain of the 53-year-old woman and the 2 men aged 64 and 67 were examined. Two fragments of the normal tissue of the cerebellar hemispheres and two fragments of the dura mater were studied also in 2 men aged 45 and 39 (surgical material of the perifocal zone of astrocytoma and glioblastoma). Methods included histological and immunohistochemical study with CD117, NeuroD1, NeuroD1/connexin43 and CD34/connexin43 cocktails; electron microscopy and immunocytochemistry with CD117; isolation of telocyte cultures; phase-contrast microscopy and confocal laser scanning microscopy of cultures. Results: CD117-positive cells were detected in the dura mater (up to 24.5% of all cells), ventricular plexus (up to 28% of all cells), cerebral cortex (up to 1%), subcortical nuclei (up to 77% in some zones), the oblongated marrow (up to 14%), the pons (up to 12%), the corpus callosum (up to 95%), the hippocampus (from 0.0001 to 90% in different layers), the cerebellum of the normal brain (6 to 90 % in different departments). Cells with telocyte characteristics expressing NeuroD1 were identified using ultrastructural analysis and confocal microscopy of isolated cultures. Conclusion: The detection of telocytes with expression of NeuroD1 in many parts of the brain may indicate the possible involvement of these cells in the development of the central nervous system. Further understanding of the functions and origin of telocytes, the study of the role of telocytes in the oncogenesis of brain tumors can lead to new, purposeful methods of treating not only neurovascular diseases but also neoplasms.


Key words

brain telocytes, immunohistochemical examination, electron microscopy and immunocytochemistry, isolation of cultures





(The article in PDF format. For preview need Adobe Acrobat Reader)



Open article in new window

Reference list

1. Popescu L.M., Ciontea S.M., Cretoiu D. Interstitial Cajal-like cells in human uterus and fallopian tube. Ann N Y Acad Sci. 2007;1101: 139-165.


2. Popescu L.M., Faussone-Pellegrini M.S. Telocytes - a case of serendipity: the winding way from interstitial cells of cajal (ICC), via interstitial cajal-like cells (ICLC) to telocytes. J Cell Mol Med. 2010; 14: 729-740.


3. Popescu L.M. The Tandem: Telocytes - Stem Cells. Int. j biol and biomed. Engineering. 2011;5(2): 83-92.


4. Bei Y., Wang F., Yang C., Xiao J. Telocytes in regenerative medicine. Journal of cellular and molecular medicine. 2015; 19(7): 1441-1454.


5. Kostin S., Popescu L.M. A distinct type of cell in myocardium: interstitial Cajal-like cells (ICLCs). J Cell Mol Med. 2009; Vol. 13: 295-308.


6. Ratajczak M. Z., Ratajczak D., Pedziwiatr D. Extracellular microvesicles (ExMVs) in cell to cell communication: a role of telocytes. Telocytes. - Springer, Singapore. 2016: 41-49.


7. Popescu B. O., Gherghiceanu M., Kostin S., Ceafalan L., Popescu, L. M. Telocytes in meninges and choroid plexus.?Neuroscience letters. 2012;?516(2): 265-269.


8. Cantarero I., Luesma M.J., Junquera C. The primary cilium of telocytes in the vasculature: electron microscope imaging. J Cell Mol Med . 2011; 15: 2594-2600.


9. Zheng Y., Bai C., Wang X. Potential significance of telocytes in the pathogenesis of lung diseases. Expert review of respiratory medicine. 2012; 6 (1): 45-49.


10. Zheng Y. Cretoiu D., Yan G. et al. Comparative proteomic analysis of human lung telocytes with fibroblasts. Journal of cellular and molecular medicine. 2014; 18 (4): 568-589.


11. Manole C. G., Cismasiu V., Gherghiceanu M. et al. Experimental acute myocardial infarction: telocytes involvement in neoangiogenesis. J Cell Mol Med. 2011; Vol. 15: 2284-2289.


12.Popescu L.M., Gherghiceanu M., Suciu L.C. et al. Telocytes and putative stem cells in the lungs: electron microscopy, electron tomography and laser scanning microscopy. Cell Tissue Res. 2011a; 345: 391-403.


13. Harhun M. I., Gordienko D.V., Povstyan O.V. et al. Function of interstitial cells of Cajal in the rabbit portal vein. Circ Res. 2004; 95(6): 619-26.


14. Smythies J, Edelstein L. Telocytes, exosomes, gap junctions and the cytoskeleton: the makings of a primitive nervous system? Front Cell Neurosci. 2014; 7: 278.


15. Popescu L. M., Fertig E. T., Gherghiceanu M. Reaching out: junctions between cardiac telocytes and cardiac stem cells in culture. Journal of cellular and molecular medicine. 2016; 20(2): 370-380.


16. Popescu L. M., Manole E., Serboiu C.S., Manole C.G. et al. Identification of telocytes in skeletal muscle interstitium: implication for muscle regeneration. J Cell Mol Med. 2011; 15: 1379-1392.


17. Cretoiu S. M., Cretoiu D. A. et al. Telocytes: ultrastructural, immunohistochemical and electrophysiological characteristics in human myometrium. Reproduction. 2013; 145(4): 357-370.


18. Milia A. F., Ruffo M., Manetti M. et al. Telocytes in Crohn's disease. Journal of cellular and molecular medicine. - 2013; 17(12): 1525-1536.


19. Oyama K., Sanno N., Teramoto A., Osamura, R. Y. Expression of neuro D1 in human normal pituitaries and pituitary adenomas.?Modern Pathology. 2001;14(9); 892.


20. Pataskar A., Jung J., Smialowski P., Noack, F. et al. NeuroD1 reprograms chromatin and transcription factor landscapes to induce the neuronal program.?The EMBO journal,?2016; 35(1): 24-45.


21. Liu M., Pereira F. A., Price S. D., Chu M. J., Shope C. et al. Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems.?Genes & development. 2000; 14(22): 2839-2854.


22. Bell G. I., Polonsky K. S. Diabetes mellitus and genetically programmed defects in β-cell function.?Nature. 2001;?414(6865): 788.


23. Cerf M. E. Transcription factors regulating β-cell function.?European Journal of Endocrinology. 2006;?155(5): 671-679.


24. Lee J. E., Hollenberg S. M., Snider L., Turner D. L., Lipnick N. Weintraub H. Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science. 1995; 268(5212): 836-844.


25. Popescu L.M., Manole C.G., Gherghiceanu M. et al. Telocytes in human epicardium. J Cell Mol Med. 2010; Vol. 14: 2085-2093.


26. Dore-Duffy P., Cleary K. Morphology and properties of pericytes. Methods Mol Biol. 2011; 686: 49-68.


27. Tilton R. G., Miller E. J., Kilo C., Williamson, J. R. Pericyte form and distribution in rat retinal and uveal capillaries.?Investigative ophthalmology & visual science. 1985;?26(1): 68-73.


28. Frank, R. N., Turczyn, T. J., Das, A. Pericyte coverage of retinal and cerebral capillaries.?Investigative ophthalmology & visual science. 1990;?31(6): 999-1007.


29. Lindahl P., Johansson B. R., Levéen P., Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice.?Science. 1997;?277(5323): 242-245.


30. Winkler E. A., Bell R. D., Zlokovic B. V. Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling.?Molecular neurodegeneration. 2010;?5(1): 32.


31. Ozerdem U., Grako K. A., Dahlin‐Huppe K. et al. NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis.?Developmental dynamics: an official publication of the American Association of Anatomists. 2001;?222(2):218-227.


32. Trost A., Schroedl F., Lange S., Rivera F. J., Tempfer H. et al. Neural crest origin of retinal and choroidal pericytes.?Investigative ophthalmology & visual science. 2013;?54(13): 7910-7921.


33. Kunz J., Krause D., Kremer M., Dermietzel R. The 140‐kDa protein of blood‐brain barrier‐associated pericytes is identical to aminopeptidase N.?Journal of neurochemistry. 1994;?62(6): 2375-2386.


34. Bondjers C., He L., Takemoto M., Norlin J., Asker N. et al. Microarray analysis of blood microvessels from PDGF-B and PDGF-Rβ mutant mice identifies novel markers for brain pericytes.?The FASEB journal. 2006;?20(10): 1703-1705.


35. Mazyrenko N. N., Ciganova I. V. Molekylyarno-geneticheskie osobennosti i markeri gastrointestinalnih stromalnih opyholei. Yspehi molekylyarnoi onkologii. 2015; (2): 29-40.


36. Armulik A., Genové G, Mae M., Nisancioglu M. H., et al. Pericytes regulate the blood-brain barrier. Nature, 2010; 468: 557-561.


37. Liu S, Agalliu D, Yu C, Fisher M. The role of pericytes in blood-brain barrier function and stroke. Curr Pharm Des. 2012; 18(25): 3653-62.


38. Rustenhoven J, Jansson D, Smyth LC, Dragunow M. Brain Pericytes As Mediators of Neuroinflammation.Trends Pharmacol Sci. 2017; 38(3): 291-304.


39. Diaz-Flores L., Gutierrez R., Madrid J. F., Varela H., Valladares F. et al. Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche.?Histology and histopathology. 2009;?24(7): 909-969.


40. Dore-Duffy P., Katychev A., et al. CNS microvascular pericytes exhibit multipotential stem cell activity.?Journal of Cerebral Blood Flow & Metabolism. 2006; 26(5): 613-624.


41. Paul G., ozen I., Christophersen N. S., Reinbothe T. et al. The adult human brain harbors multipotent perivascular mesenchymal stem cells.?PloS one. 2012;?7(4):1-11.


42. Canfield A. E., Sutton A. B., Hoyland J. A., Schor A. M. Association of thrombospondin-1 with osteogenic differentiation of retinal pericytes in vitro.?Journal of cell science. 1996;?109(2): 343-353.


43. Doherty M. J., Ashton B. A., Walsh S., Beresford J. N., Grant M. E., Canfield A. E. Vascular pericytes express osteogenic potential in vitro and in vivo.?Journal of Bone and Mineral Research. 1998;?13(5): 828-838.


44. Farrington-Rock C., Crofts N. J., Doherty M. J., Ashton, B. A. et al. Chondrogenic and adipogenic potential of microvascular pericytes.?Circulation. 2004;?110(15): 2226-2232.


45. Ratajczak M. Z., Jadczyk T, Pędziwiatr D, Wojakowski W. New advances in stem cell research: practical implications for regenerative medicine. Pol Arch Med Wewn. 2014; 124(7-8): 417-26.


46. Krawczyk A., Jaworska-Adamu J. Synantocytes: the fifth type of glia? In comparison with astrocytes. Folia Histochemica et Cytobiologica 2010; 48 (2): 173-177.


47. Nakano M., Tamura Y., Yamato M., Kume S. et al. NG2 glial cells regulate neuroimmunological responses to maintain neuronal function and survival.?Scientific reports. 2017;?7: 42041.


48. Kang S. H., Li Y., Fukaya M., Lorenzini I., Cleveland D. W. et al. Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis.?Nature neuroscience. 2013;?16(5): 571.


49. Kremer D., Gottle P., Hartung H. P., Kury P. Pushing forward: remyelination as the new frontier in CNS diseases.?Trends in neurosciences. 2016;?39(4); 246-263.


50. Caplan A.I. Mesenchymal stem cells. J Orthop Res 1991; 9: 641-650.


51. Haynesworth S. E., Goshima J., Goldberg V. M. et al. Characterization of cells with osteogenic potential from human marrow. Bone 1992; 13: 81-88.


52. Caplan A. I. Mesenchymal stem cells: time to change the name!?Stem cells translational medicine. 2017; 6(6): 1445-1451.



Свидетельство о регистрации сетевого электронного научного издания N 077 от 29.11.2006
Журнал основан 16 ноября 2000г.
Выдано Министерством РФ по делам печати, телерадиовещания и средств массовых коммуникаций
(c) Перепечатка материалов сайта Medline.Ru возможна только с письменного разрешения редакции

Размещение рекламы

Rambler's Top100